A novel tamanavirus () of the European common frog () from the UK.

Rhys H Parry, Andrii Slonchak, Lewis J Campbell, Natalee D Newton, Humberto J Debat, Robert J Gifford, Alexander A Khromykh
Author Information
  1. Rhys H Parry: School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
  2. Andrii Slonchak: School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
  3. Lewis J Campbell: Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
  4. Natalee D Newton: School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
  5. Humberto J Debat: Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba X5020ICA, Argentina.
  6. Robert J Gifford: MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
  7. Alexander A Khromykh: School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.

Abstract

Flavivirids are small, enveloped, positive-sense RNA viruses from the family with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog () in the UK, utilizing high-throughput sequencing at six catch locations. assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from and , respectively. Phylogenetic analysis of the RaTV polyprotein compared to and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39 % pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.

Keywords

Associated Data

figshare | 10. 6084/m9.figshare.24720651

References

  1. J Virol. 2019 Jun 28;93(14): [PMID: 31068424]
  2. RNA. 2021 Jan;27(1):54-65 [PMID: 33004436]
  3. J Virol. 2020 Jul 16;94(15): [PMID: 32434883]
  4. Nat Commun. 2018 Jan 9;9(1):119 [PMID: 29317714]
  5. Genome Biol. 2019 Jan 8;20(1):8 [PMID: 30621750]
  6. Cell Host Microbe. 2008 Dec 11;4(6):579-91 [PMID: 19064258]
  7. J Virol. 2004 Jan;78(1):178-86 [PMID: 14671099]
  8. Syst Biol. 2007 Aug;56(4):564-77 [PMID: 17654362]
  9. Gigascience. 2019 Sep 1;8(9): [PMID: 31494669]
  10. PLoS One. 2017 Sep 20;12(9):e0184768 [PMID: 28931029]
  11. RNA Biol. 2021 Dec;18(12):2321-2329 [PMID: 33858294]
  12. Viruses. 2017 Jun 21;9(6): [PMID: 28635667]
  13. Epidemiol Infect. 2007 Oct;135(7):1200-12 [PMID: 17181914]
  14. Virus Evol. 2021 Mar 30;7(1):veab030 [PMID: 34026271]
  15. Virus Evol. 2021 Apr 13;7(1):veab034 [PMID: 34017611]
  16. Virus Evol. 2018 Oct 31;4(2):vey031 [PMID: 30397510]
  17. Am J Clin Pathol. 1957 Mar;27(3):257-64 [PMID: 13410856]
  18. J Gen Virol. 2023 Dec;104(12): [PMID: 38059479]
  19. Mol Ecol. 2018 Mar;27(6):1413-1427 [PMID: 29420865]
  20. PLoS One. 2013 Jun 12;8(6):e65427 [PMID: 23950785]
  21. Virology. 1989 Aug;171(2):637-9 [PMID: 2548336]
  22. J Virol. 1997 Nov;71(11):8475-81 [PMID: 9343204]
  23. Arch Virol. 2002 Mar;147(3):447-70 [PMID: 11958449]
  24. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  25. J Virol. 2022 Sep 14;96(17):e0043922 [PMID: 35975997]
  26. Microbiol Spectr. 2022 Dec 21;10(6):e0146222 [PMID: 36445118]
  27. J Gen Virol. 2015 Jul;96(Pt 7):1551-69 [PMID: 25711963]
  28. J Gen Virol. 2017 Jan;98(1):2-3 [PMID: 28218572]
  29. Nature. 2018 Apr;556(7700):197-202 [PMID: 29618816]
  30. Viruses. 2020 Oct 09;12(10): [PMID: 33050289]
  31. Nat Struct Biol. 2003 Nov;10(11):907-12 [PMID: 14528291]
  32. Mol Ecol. 2009 Aug;18(15):3163-72 [PMID: 19566676]
  33. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11466-73 [PMID: 18695221]
  34. mBio. 2020 Sep 29;11(5): [PMID: 32994331]
  35. Microorganisms. 2021 Aug 03;9(8): [PMID: 34442732]
  36. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8898-902 [PMID: 2147282]
  37. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  38. Viruses. 2021 Jul 14;13(7): [PMID: 34372574]
  39. Viruses. 2020 Sep 18;12(9): [PMID: 32962015]
  40. Protein Sci. 2021 Jan;30(1):70-82 [PMID: 32881101]
  41. Virus Evol. 2022 Dec 26;9(1):veac124 [PMID: 36694816]
  42. Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70 [PMID: 25969447]
  43. Nat Rev Microbiol. 2022 Jun;20(6):321-334 [PMID: 34983966]
  44. Nat Commun. 2022 Mar 11;13(1):1279 [PMID: 35277507]
  45. Mol Biol Evol. 2022 Oct 7;39(10): [PMID: 36063436]
  46. J Gen Virol. 2002 Oct;83(Pt 10):2443-2454 [PMID: 12237426]
  47. Sci Adv. 2022 Dec 2;8(48):eadd8095 [PMID: 36449607]
  48. Nat Microbiol. 2020 Jun;5(6):796-812 [PMID: 32367055]
  49. ISME Commun. 2022 Oct 2;2(1):95 [PMID: 37938670]
  50. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  51. Front Microbiol. 2019 Jun 21;10:1245 [PMID: 31281291]
  52. PLoS One. 2009 Jul 20;4(7):e6282 [PMID: 19617912]
  53. PLoS Comput Biol. 2007 Apr 13;3(4):e65 [PMID: 17432929]
  54. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  55. Antiviral Res. 2018 Nov;159:13-25 [PMID: 30217649]
  56. Science. 2002 Sep 6;297(5587):1703-6 [PMID: 12215647]
  57. Emerg Infect Dis. 1999 Nov-Dec;5(6):735-48 [PMID: 10603206]
  58. Insect Biochem Mol Biol. 2018 Nov;102:75-83 [PMID: 30287269]
  59. Nat Struct Mol Biol. 2013 Jan;20(1):105-10 [PMID: 23241927]
  60. Virus Evol. 2022 Sep 06;8(2):veac085 [PMID: 36533146]
  61. PeerJ. 2018 Nov 16;6:e5949 [PMID: 30479902]
  62. Nat Commun. 2020 May 5;11(1):2205 [PMID: 32371874]
  63. Arch Virol. 2018 Mar;163(3):679-685 [PMID: 29147783]
  64. J Virol. 2002 Apr;76(8):3784-90 [PMID: 11907218]
  65. Brief Bioinform. 2019 Jul 19;20(4):1160-1166 [PMID: 28968734]
  66. Nature. 1995 May 25;375(6529):291-8 [PMID: 7753193]
  67. J Virol. 2001 May;75(9):4268-75 [PMID: 11287576]
  68. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  69. Am J Trop Med Hyg. 1978 Jan;27(1 Pt 1):153-61 [PMID: 626270]
  70. J Virol. 2017 Mar 29;91(8): [PMID: 28148785]
  71. J Virol. 1990 Sep;64(9):4573-7 [PMID: 2143546]

MeSH Term

Animals
Flaviviridae
Rana temporaria
Phylogeny
RNA, Viral
Flavivirus
Polyproteins
United Kingdom
Genome, Viral

Chemicals

RNA, Viral
Polyproteins

Word Cloud

Created with Highcharts 10.0.0RaTVvirusRNAfrogUKtamanavirusvirusesanalysesrevealedflavivirus-likeflaviviridEuropeancommonnovelrespectivelyRanaanalysispolyproteinshowedTABVdivergentsamplesxrRNAXrn1Flaviviridssmallenvelopedpositive-sensefamilygenomes~9-13 kbMetatranscriptomicmetazoanorganismsdiversityviralsequencesfishmarineinvertebrategroupsHoweveridentifiedamphibiansremedyinvestigatedviromeutilizinghigh-throughputsequencingsixcatchlocationsassemblycoding-completecontig~112 kblengthencodessingleORF3456aa5'3'untranslatedregionsUTRs227666ntnamedBLASTpclosestrelationshipsTamanabatCyclopteruslumpusPhylogeneticcomparedFlavivirus-likemembersindicatedsufficientlybasalvertebrateTamanaviruscladeadditionMitchamstrainpartialsharing9564-9739 % pairwisenucleotideidentityalsoobtainedPooleDealindicatingwidespreadBioinformaticpredictedsecondarystructures3'UTRpresenceexoribonuclease-resistantstructurestandardflavivirusesexaminebiochemicallyconducteddigestionassayshowingprobablyformsfunctionalXrn1-resistantFlaviviridaetemporariaamphibianflavivirusmetagenomicssfRNAstructural

Similar Articles

Cited By