Niche differentiation, reproductive interference, and range expansion.

Gregory F Grether, Ann E Finneran, Jonathan P Drury
Author Information
  1. Gregory F Grether: Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA. ORCID
  2. Ann E Finneran: Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA.
  3. Jonathan P Drury: Department of Biosciences, Durham University, Durham, UK. ORCID

Abstract

Understanding species distributions and predicting future range shifts requires considering all relevant abiotic factors and biotic interactions. Resource competition has received the most attention, but reproductive interference is another widespread biotic interaction that could influence species ranges. Rubyspot damselflies (Hetaerina spp.) exhibit a biogeographic pattern consistent with the hypothesis that reproductive interference has limited range expansion. Here, we use ecological niche models to evaluate whether this pattern could have instead been caused by niche differentiation. We found evidence for climatic niche differentiation, but the species that encounters the least reproductive interference has one of the narrowest and most peripheral niches. These findings strengthen the case that reproductive interference has limited range expansion and also provide a counterexample to the idea that release from negative species interactions triggers niche expansion. We propose that release from reproductive interference enables species to expand in range while specializing on the habitats most suitable for breeding.

Keywords

References

  1. Philos Trans R Soc Lond B Biol Sci. 2022 Mar 14;377(1846):20210013 [PMID: 35067095]
  2. Trends Ecol Evol. 2014 Oct;29(10):572-80 [PMID: 25172405]
  3. J Anim Ecol. 2009 Sep;78(5):1043-9 [PMID: 19457018]
  4. Mol Phylogenet Evol. 2018 Oct;127:712-722 [PMID: 29906609]
  5. Mol Phylogenet Evol. 2019 Oct;139:106536 [PMID: 31212083]
  6. Am Nat. 2000 May;155(5):583-605 [PMID: 10777432]
  7. Zootaxa. 2020 Apr 21;4766(3):zootaxa.4766.3.7 [PMID: 33056594]
  8. Trends Ecol Evol. 2021 Mar;36(3):206-215 [PMID: 33223276]
  9. Ecology. 2010 Mar;91(3):847-57 [PMID: 20426342]
  10. Trends Ecol Evol. 2017 Oct;32(10):760-772 [PMID: 28797610]
  11. Am Nat. 2019 Aug;194(2):268-275 [PMID: 31318285]
  12. Philos Trans R Soc Lond B Biol Sci. 2022 Apr 11;377(1848):20210020 [PMID: 35184598]
  13. Trends Ecol Evol. 2017 Jul;32(7):488-499 [PMID: 28477957]
  14. PLoS One. 2014 May 12;9(5):e97122 [PMID: 24818607]
  15. PLoS One. 2015 Jun 16;10(6):e0130025 [PMID: 26080074]
  16. Oecologia. 1985 May;66(2):168-177 [PMID: 28311586]
  17. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  18. PLoS One. 2016 Oct 10;11(10):e0164381 [PMID: 27723785]
  19. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2888-92 [PMID: 23359710]
  20. J Evol Biol. 2020 Oct;33(10):1330-1344 [PMID: 32762053]
  21. Ecology. 2012 Jun;93(6):1353-66 [PMID: 22834376]
  22. Am Nat. 1997 Jul;150(1):1-23 [PMID: 18811273]
  23. Insect Sci. 2016 Apr;23(2):162-74 [PMID: 26542083]
  24. NPJ Biodivers. 2022 Nov 17;1(1):1 [PMID: 39242770]
  25. PeerJ. 2020 Dec 15;8:e10517 [PMID: 33362973]
  26. Trends Ecol Evol. 2021 May;36(5):391-401 [PMID: 33618936]
  27. Syst Biol. 2018 May 01;67(3):413-427 [PMID: 29029306]
  28. Q Rev Biol. 2008 Sep;83(3):257-82 [PMID: 18792662]
  29. Science. 2007 Dec 14;318(5857):1769-72 [PMID: 17991828]
  30. BMC Ecol. 2018 Nov 6;18(1):46 [PMID: 30400870]
  31. Proc Biol Sci. 2015 Apr 07;282(1804):20142256 [PMID: 25740887]
  32. Environ Monit Assess. 2021 Nov 2;193(11):763 [PMID: 34729664]
  33. Am Nat. 2011 Jun;177(6):709-27 [PMID: 21597249]
  34. Methods Ecol Evol. 2015 Apr;6(4):424-438 [PMID: 27840673]
  35. Evolution. 2017 Sep;71(9):2178-2193 [PMID: 28685868]
  36. Ecol Lett. 2024 Jan;27(1):e14350 [PMID: 38062899]
  37. Ecology. 2006 Jun;87(6):1399-410 [PMID: 16869414]
  38. Bull Entomol Res. 2014 Jun;104(3):334-46 [PMID: 24521733]
  39. Ecol Lett. 2022 Oct;25(10):2167-2176 [PMID: 35986619]
  40. Proc Biol Sci. 2018 Dec 19;285(1893):20182603 [PMID: 30963885]
  41. Ecol Lett. 2013 Aug;16(8):1104-14 [PMID: 23773417]
  42. Nature. 2014 Feb 20;506(7488):359-63 [PMID: 24362572]
  43. Am Nat. 2011 Apr;177(4):462-9 [PMID: 21460568]
  44. Ecol Lett. 2020 Feb;23(2):221-230 [PMID: 31733032]
  45. Proc Biol Sci. 2010 Jun 22;277(1689):1789-97 [PMID: 20164100]
  46. Biol Rev Camb Philos Soc. 2023 Dec;98(6):2012-2027 [PMID: 37364865]
  47. PeerJ. 2017 Mar 14;5:e3093 [PMID: 28316894]
  48. Ecol Lett. 2013 Dec;16(12):1424-35 [PMID: 24134332]

Grants

  1. DEB-NERC-2040883/Division of Environmental Biology
  2. DEB-2137560/REPS
  3. /UCLA Whitcome Summer Undergraduate Research Fellowship

MeSH Term

Animals
Models, Theoretical
Reproduction
Ecosystem
Odonata

Word Cloud

Created with Highcharts 10.0.0interferencenichereproductivespeciesrangeexpansionecologicaldifferentiationreleasemodelbioticinteractionspatternlimitedUnderstandingdistributionspredictingfutureshiftsrequiresconsideringrelevantabioticfactorsResourcecompetitionreceivedattentionanotherwidespreadinteractioninfluencerangesRubyspotdamselfliesHetaerinasppexhibitbiogeographicconsistenthypothesisusemodelsevaluatewhetherinsteadcausedfoundevidenceclimaticencountersleastonenarrowestperipheralnichesfindingsstrengthencasealsoprovidecounterexampleideanegativetriggersproposeenablesexpandspecializinghabitatssuitablebreedingNicheOdonatabehaviouralhabitatsuitabilitybreadthoverlapsimilaritydistribution

Similar Articles

Cited By (2)