Genetic insights into the microevolutionary dynamics and early introductions of human monkeypox virus in Mexico.

Israel Gómez-Sánchez, Hugo G Castelán-Sánchez, León P Martínez-Castilla, Juan Manuel Hurtado-Ramírez, Gamaliel López-Leal
Author Information
  1. Israel Gómez-Sánchez: Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
  2. Hugo G Castelán-Sánchez: Grupo de Genómica y Dinámica Evolutiva de Microorganismos EmergentesPrograma de Investigadoras e Investigadores por México, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico. hcastelans@gmail.com.
  3. León P Martínez-Castilla: Grupo de Genómica y Dinámica Evolutiva de Microorganismos EmergentesPrograma de Investigadoras e Investigadores por México, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
  4. Juan Manuel Hurtado-Ramírez: Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
  5. Gamaliel López-Leal: Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico. gamaliel.lopez@uaem.edu.mx. ORCID

Abstract

The recent global outbreak of mpox, caused by monkeypox virus (MPV) emerged in Europe in 2022 and rapidly spread to over 40 countries. The Americas are currently facing the highest impact, reporting over 50,000 cases by early 2023. In this study, we analyzed 880 MPV isolates worldwide to gain insights into the evolutionary patterns and initial introduction events of the virus in Mexico. We found that MPV entered Mexico on multiple occasions, from the United Kingdom, Portugal, and Canada, and subsequently spread locally in different regions of Mexico. Additionally, we show that MPV has an open pangenome, highlighting the role of gene turnover in shaping its genomic diversity, rather than single-nucleotide polymorphisms (SNPs), which do not contribute significantly to genome diversity. Although the genome contains multiple SNPs in coding regions, these remain under purifying selection, suggesting their evolutionary conservation. One notable exception is amino acid position 63 of the protein encoded by the Cop-A4L gene, which is intricately related to viral maturity, which we found to be under strong positive selection. Ancestral state reconstruction indicated that the ancestral state at position 63 corresponds to the amino acid valine, which is present only in isolates of clade I. However, the isolates from the current outbreak contained threonine at position 63. Our findings contribute new information about the evolution of monkeypox virus.

References

  1. McCollum AM, Damon IK (2014) Human monkeypox. Clin Infect Dis 58:260–267 [DOI: 10.1093/cid/cit703]
  2. Fine PE, Jezek Z, Grab B, Dixon H (1988) The transmission potential of monkeypox virus in human populations. Int J Epidemiol 17:643–650 [DOI: 10.1093/ije/17.3.643]
  3. Ladnyj ID, Ziegler P, Kima E (1972) A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ 46:593–597 [PMID: 4340218]
  4. Saravanan M, Belete MA, Madhavan Y (2022) Monkeypox virus outbreaks in the African continent: A new zoonotic alert—Correspondence. Int J Surg 108:106998 [DOI: 10.1016/j.ijsu.2022.106998]
  5. Chen N, Li G, Liszewski MK, Atkinson JP, Jahrling PB, Feng Z, Schriewer J, Buck C, Wang C, Lefkowitz EJ, Esposito JJ, Harms T, Damon IK, Roper RL, Upton C, Buller RM (2005) Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340:46–63 [DOI: 10.1016/j.virol.2005.05.030]
  6. Huhn GD, Bauer AM, Yorita K, Graham MB, Sejvar J, Likos A, Damon IK, Reynolds MG, Kuehnert MJ (2005) Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin Infect Dis 41:1742–1751 [DOI: 10.1086/498115]
  7. Yinka-Ogunleye A, Aruna O, Dalhat M, Ogoina D, McCollum A, Disu Y, Mamadu I, Akinpelu A, Ahmad A, Burga J, Ndoreraho A, Nkunzimana E, Manneh L, Mohammed A, Adeoye O, Tom-Aba D, Silenou B, Ipadeola O, Saleh M, Adeyemo A, Nwadiutor I, Aworabhi N, Uke P, John D, Wakama P, Reynolds M, Mauldin MR, Doty J, Wilkins K, Musa J, Khalakdina A, Adedeji A, Mba N, Ojo O, Krause G, Ihekweazu C, CDCMO Team (2019) Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect Dis 19:872–879 [DOI: 10.1016/S1473-3099(19)30294-4]
  8. Wang L, Shang J, Weng S, Aliyari SR, Ji C, Cheng G, Wu A (2023) Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J Med Virol 95:e28036 [DOI: 10.1002/jmv.28036]
  9. WHO (2023) 2022–23 Mpox outbreak: global trends. World Health Organization, Geneva
  10. Organization PAH (2023) Mpox cases—Region of the Americas
  11. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066 [DOI: 10.1093/nar/gkf436]
  12. Shean RC, Makhsous N, Stoddard GD, Lin MJ, Greninger AL (2019) VAPiD: a lightweight cross-platform viral annotation pipeline and identification tool to facilitate virus genome submissions to NCBI GenBank. BMC Bioinform 20:48 [DOI: 10.1186/s12859-019-2606-y]
  13. Senkevich TG, Yutin N, Wolf YI, Koonin EV, Moss B (2021) Ancient gene capture and recent gene loss shape the evolution of orthopoxvirus-host interaction genes. MBio 12:e0149521 [DOI: 10.1128/mBio.01495-21]
  14. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher RA (2018) Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34:4121–4123 [DOI: 10.1093/bioinformatics/bty407]
  15. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274 [DOI: 10.1093/molbev/msu300]
  16. Sagulenko P, Puller V, Neher RA (2018) TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol 4:vex042 [DOI: 10.1093/ve/vex042]
  17. Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O (2019) A fast likelihood method to reconstruct and visualize ancestral scenarios. Mol Biol Evol 36:2069–2085 [DOI: 10.1093/molbev/msz131]
  18. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693 [DOI: 10.1093/bioinformatics/btv421]
  19. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113 [DOI: 10.1186/1471-2105-5-113]
  20. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [DOI: 10.1016/S0168-9525(00)02024-2]
  21. Kosakovsky Pond SL, Poon AFY, Velazquez R, Weaver S, Hepler NL, Murrell B, Shank SD, Magalis BR, Bouvier D, Nekrutenko A, Wisotsky S, Spielman SJ, Frost SDW, Muse SV (2020) HyPhy 2.5—a customizable platform for evolutionary hypothesis testing using phylogenies. Mol Biol Evol 37:295–299 [DOI: 10.1093/molbev/msz197]
  22. Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 35:773–777 [DOI: 10.1093/molbev/msx335]
  23. Salud Sd (2022) México confirma primer caso importado de viruela símica
  24. Wang L, Luo Y, Zhao Y, Gao GF, Bi Y, Qiu HJ (2020) Comparative genomic analysis reveals an “open” pan-genome of African swine fever virus. Transbound Emerg Dis 67:1553–1562 [DOI: 10.1111/tbed.13489]
  25. Dobrovolna M, Brazda V, Warner EF, Bidula S (2023) Inverted repeats in the monkeypox virus genome are hot spots for mutation. J Med Virol 95:e28322 [DOI: 10.1002/jmv.28322]
  26. Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A (2010) Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol 27:2038–2051 [DOI: 10.1093/molbev/msq088]
  27. Luna N, Ramirez AL, Munoz M, Ballesteros N, Patino LH, Castaneda SA, Bonilla-Aldana DK, Paniz-Mondolfi A, Ramirez JD (2022) Phylogenomic analysis of the monkeypox virus (MPXV) 2022 outbreak: emergence of a novel viral lineage? Travel Med Infect Dis 49:102402 [DOI: 10.1016/j.tmaid.2022.102402]
  28. Castelan-Sanchez HG, Delaye L, Inward RPD, Dellicour S, Gutierrez B, Martinez de la Vina N, Boukadida C, Pybus O, de Anda Jauregui G, Guzman P, Flores-Garrido M, Fontanelli O, Hernandez Rosales M, Meneses A, Olmedo-Alvarez G, Herrera-Estrella AH, Sanchez-Flores A, Munoz-Medina JE, Comas-Garcia A, Gomez-Gil B, Zarate S, Taboada B, Lopez S, Arias CF, Kraemer MUG, Lazcano A, Escalera Zamudio M (2023) Comparing the evolutionary dynamics of predominant SARS-CoV-2 virus lineages co-circulating in Mexico. Elife 12:e82069 [DOI: 10.7554/eLife.82069]
  29. Castelan-Sanchez HG, Martinez-Castilla LP, Sganzerla-Martinez G, Torres-Flores J, Lopez-Leal G (2022) Genome evolution and early introductions of the SARS-CoV-2 omicron variant in Mexico. Virus Evol 8:veac109 [DOI: 10.1093/ve/veac109]
  30. Zhan XY, Zha GF, He Y (2023) Evolutionary dissection of monkeypox virus: positive Darwinian selection drives the adaptation of virus-host interaction proteins. Front Cell Infect Microbiol 12:1083234 [DOI: 10.3389/fcimb.2022.1083234]
  31. Alkhalil A, Strand S, Mucker E, Huggins JW, Jahrling PB, Ibrahim SM (2009) Inhibition of monkeypox virus replication by RNA interference. Virol J 6:188 [DOI: 10.1186/1743-422X-6-188]
  32. Williams O, Wolffe EJ, Weisberg AS, Merchlinsky M (1999) Vaccinia virus WR gene A5L is required for morphogenesis of mature virions. J Virol 73:4590–4599 [DOI: 10.1128/JVI.73.6.4590-4599.1999]
  33. Risco C, Rodriguez JR, Demkowicz W, Heljasvaara R, Carrascosa JL, Esteban M, Rodriguez D (1999) The vaccinia virus 39-kDa protein forms a stable complex with the p4a/4a major core protein early in morphogenesis. Virology 265:375–386 [DOI: 10.1006/viro.1999.0046]
  34. Demkowicz WE, Maa JS, Esteban M (1992) Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. J Virol 66:386–398 [DOI: 10.1128/jvi.66.1.386-398.1992]

MeSH Term

Humans
Mpox (monkeypox)
Monkeypox virus
Mexico
Phylogeny
Amino Acids
Disease Outbreaks

Chemicals

Amino Acids

Word Cloud

Created with Highcharts 10.0.0virusMPVMexicomonkeypoxisolatesposition63outbreakspreadearlyinsightsevolutionaryfoundmultipleregionsgenediversitySNPscontributegenomeselectionaminoacidstaterecentglobalmpoxcausedemergedEurope2022rapidly40countriesAmericascurrentlyfacinghighestimpactreporting50000cases2023studyanalyzed880worldwidegainpatternsinitialintroductioneventsenteredoccasionsUnitedKingdomPortugalCanadasubsequentlylocallydifferentAdditionallyshowopenpangenomehighlightingroleturnovershapinggenomicrathersingle-nucleotidepolymorphismssignificantlyAlthoughcontainscodingremainpurifyingsuggestingconservationOnenotableexceptionproteinencodedCop-A4LintricatelyrelatedviralmaturitystrongpositiveAncestralreconstructionindicatedancestralcorrespondsvalinepresentcladeHowevercurrentcontainedthreoninefindingsnewinformationevolutionGeneticmicroevolutionarydynamicsintroductionshuman

Similar Articles

Cited By