Virtual and Augmented Reality in Interventional Radiology: Current Applications, Challenges, and Future Directions.

Ahmed Elsakka, Brian J Park, Brett Marinelli, Nathaniel C Swinburne, Javin Schefflein
Author Information
  1. Ahmed Elsakka: Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
  2. Brian J Park: Oregon Health & Science University, Portland, OR.
  3. Brett Marinelli: Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
  4. Nathaniel C Swinburne: Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
  5. Javin Schefflein: Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY. Electronic address: scheffj@mskcc.org.

Abstract

Virtual reality (VR) and augmented Reality (AR) are emerging technologies with the potential to revolutionize Interventional radiology (IR). These innovations offer advantages in patient care, interventional planning, and educational training by improving the visualization and navigation of medical images. Despite progress, several challenges hinder their widespread adoption, including limitations in navigation systems, cost, clinical acceptance, and technical constraints of AR/VR equipment. However, ongoing research holds promise with recent advancements such as shape-sensing needles and improved organ deformation modeling. The development of deep learning techniques, particularly for medical imaging segmentation, presents a promising avenue to address existing accuracy and precision issues. Future applications of AR/VR in IR include simulation-based training, preprocedural planning, intraprocedural guidance, and increased patient engagement. As these technologies advance, they are expected to facilitate telemedicine, enhance operational efficiency, and improve patient outcomes, marking a new frontier in interventional radiology.

Keywords

References

  1. J Vasc Interv Radiol. 2018 Jul;29(7):971-974 [PMID: 29935787]
  2. Healthc Technol Lett. 2017 Sep 14;4(5):184-187 [PMID: 29184662]
  3. Br J Radiol. 2022 Sep 1;95(1138):20211360 [PMID: 35731848]
  4. Nat Methods. 2021 Feb;18(2):203-211 [PMID: 33288961]
  5. IEEE Trans Vis Comput Graph. 2013 Jul;19(7):1199-217 [PMID: 23661012]
  6. Eur Radiol Exp. 2018 Jul 31;2:18 [PMID: 30148251]
  7. J Vasc Interv Radiol. 2020 Dec;31(12):2098-2103 [PMID: 33261744]
  8. J Vasc Interv Radiol. 2023 Feb;34(2):307-310 [PMID: 36283593]
  9. J Digit Imaging. 1998 Aug;11(3 Suppl 1):120-3 [PMID: 9735448]
  10. Radiology. 2019 Jun;291(3):570-580 [PMID: 30990383]
  11. Sci Rep. 2020 Oct 29;10(1):18620 [PMID: 33122766]
  12. Transl Androl Urol. 2020 Dec;9(6):3009-3017 [PMID: 33457274]
  13. J Urol. 2006 Nov;176(5):2173-8 [PMID: 17070287]
  14. J Vasc Interv Radiol. 2020 Oct;31(10):1612-1618.e1 [PMID: 32826152]
  15. J Med Imaging (Bellingham). 2023 Mar;10(2):025001 [PMID: 36875636]
  16. Adv Med Educ Pract. 2018 May 10;9:357-363 [PMID: 29785148]
  17. J Vasc Interv Radiol. 2020 Jul;31(7):1074-1082 [PMID: 32061520]
  18. J Vasc Interv Radiol. 2022 Mar;33(3):333-338 [PMID: 35221048]
  19. Radiology. 2016 Oct;281(1):249-55 [PMID: 27089025]
  20. Eur J Vasc Endovasc Surg. 2019 Oct;58(4):602-608 [PMID: 31495728]
  21. Med Pregl. 2013 Jul-Aug;66(7-8):335-40 [PMID: 24069818]

Grants

  1. P30 CA008748/NCI NIH HHS

MeSH Term

Humans
Augmented Reality
Radiology, Interventional
Virtual Reality

Word Cloud

Created with Highcharts 10.0.0realityinterventionalradiologypatientVirtualaugmentedRealitytechnologiesInterventionalIRplanningtrainingnavigationmedicalAR/VRFutureVRARemergingpotentialrevolutionizeinnovationsofferadvantagescareeducationalimprovingvisualizationimagesDespiteprogressseveralchallengeshinderwidespreadadoptionincludinglimitationssystemscostclinicalacceptancetechnicalconstraintsequipmentHoweverongoingresearchholdspromiserecentadvancementsshape-sensingneedlesimprovedorgandeformationmodelingdevelopmentdeeplearningtechniquesparticularlyimagingsegmentationpresentspromisingavenueaddressexistingaccuracyprecisionissuesapplicationsincludesimulation-basedpreproceduralintraproceduralguidanceincreasedengagementadvanceexpectedfacilitatetelemedicineenhanceoperationalefficiencyimproveoutcomesmarkingnewfrontierAugmentedRadiology:CurrentApplicationsChallengesDirectionsoncologymixedvirtual

Similar Articles

Cited By