Sex-specific effects of organophosphate ester exposure on child growth trajectories in the first two years.

Hang Wang, Liyi Zhang, Jie Wu, Pengpeng Wang, Qiang Li, Xinyao Sui, Yaqi Xu, Yue Zhao, Yang Liu, Yunhui Zhang
Author Information
  1. Hang Wang: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.
  2. Liyi Zhang: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.
  3. Jie Wu: The Maternal and Child Healthcare Hospital of Songjiang District, Shanghai 201600, China.
  4. Pengpeng Wang: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.
  5. Qiang Li: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.
  6. Xinyao Sui: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.
  7. Yaqi Xu: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.
  8. Yue Zhao: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.
  9. Yang Liu: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.
  10. Yunhui Zhang: Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China.

Abstract

The connections between urinary organophosphate ester (OPE) metabolites and child growth have been identified in prior research, but there is currently a dearth of epidemiological evidence regarding the sex-specific impact of OPEs on child growth trajectories. This study enrolled 804 maternal-child pairs, and five OPE congeners were quantified in maternal serum during pregnancy. In this study, the impact of prenatal OPE exposure on child growth trajectories was assessed using linear mixed-effect models and a group-based trajectory model (GBTM), with consideration given to sex-specific effects. Fetuses were frequently exposed to OPEs in utero, and tris(2-butoxyethel) phosphate (TBEP) exhibited the highest concentration levels in maternal serum. Among male children, an increase of 2.72 ng/g lipid in TBEP concentration was associated with a 0.11-unit increase in head circumference-for-age z-score (HCAZ), and the effect was mainly concentrated at 1 and 2 months of age. Among female children, an increase of 2.72 ng/g lipid in tris(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) concentration was associated with a 0.15-unit increase in length-for-age z-score (LAZ) and a 0.14-unit increase in weight-for-age z-score (WAZ), and the effects were mainly concentrated at 9 months of age. For HCAZ trajectories, higher prenatal TBEP exposure was associated with higher odds for the fast growth group in male children. For the LAZ and WAZ trajectories, higher prenatal TDCPP exposure was associated with higher odds for the fast growth group in female children. The trajectory analysis approach provided insight into the complex associations between OPE exposure and child growth.

Keywords

References

  1. Environ Res. 2021 Mar;194:110627 [PMID: 33345893]
  2. FASEB J. 2015 Jul;29(7):2905-11 [PMID: 25825462]
  3. Anal Bioanal Chem. 2014 Jul;406(17):4063-88 [PMID: 24828974]
  4. Arch Pediatr Adolesc Med. 2011 Oct;165(10):906-12 [PMID: 21969392]
  5. Int J Hyg Environ Health. 2023 Mar;248:114089 [PMID: 36481744]
  6. Environ Sci Technol. 2021 Mar 2;55(5):3091-3100 [PMID: 33397100]
  7. J Chromatogr B Biomed Sci Appl. 2001 May 5;755(1-2):157-64 [PMID: 11393700]
  8. Int J Mol Sci. 2019 Jun 12;20(12): [PMID: 31212857]
  9. J Hazard Mater. 2021 Mar 15;406:124754 [PMID: 33310325]
  10. Environ Sci Technol. 2017 Jun 6;51(11):6489-6497 [PMID: 28516762]
  11. Pediatr Obes. 2018 Sep;13(9):550-557 [PMID: 29700996]
  12. Environ Int. 2018 Jul;116:248-254 [PMID: 29698901]
  13. Environ Health Perspect. 2005 Jul;113(7):853-7 [PMID: 16002372]
  14. Reproduction. 2018 Jan;155(1):R39-R51 [PMID: 29030490]
  15. Acta Paediatr. 2019 Sep;108(9):1632-1641 [PMID: 30748036]
  16. Environ Sci Technol. 2009 Feb 1;43(3):941-7 [PMID: 19245040]
  17. Sci Total Environ. 2015 Dec 15;538:959-65 [PMID: 26363608]
  18. Environ Int. 2018 Oct;119:438-446 [PMID: 30031263]
  19. Psychol Methods. 2001 Mar;6(1):18-34 [PMID: 11285809]
  20. Environ Sci Technol. 2022 Dec 6;56(23):17018-17028 [PMID: 36375127]
  21. Environ Int. 2019 Sep;130:104956 [PMID: 31272017]
  22. Lancet. 2013 Aug 10;382(9891):525-34 [PMID: 23541370]
  23. Environ Sci Process Impacts. 2019 Jan 23;21(1):124-132 [PMID: 30427354]
  24. Environ Health Perspect. 2010 Mar;118(3):318-23 [PMID: 20194068]
  25. Lancet. 2013 Aug 3;382(9890):427-451 [PMID: 23746772]
  26. Food Chem Toxicol. 2001 Dec;39(12):1263-70 [PMID: 11696400]
  27. PLoS One. 2017 Jul 12;12(7):e0179368 [PMID: 28700699]
  28. Obes Rev. 2005 May;6(2):143-54 [PMID: 15836465]
  29. Environ Sci Technol. 2016 Jul 19;50(14):7752-60 [PMID: 27350238]
  30. BMJ. 2000 Apr 8;320(7240):967-71 [PMID: 10753147]
  31. Chemosphere. 2023 Feb;314:137695 [PMID: 36587911]
  32. Toxicol Lett. 2015 Jan 5;232(1):203-12 [PMID: 25448284]
  33. Environ Sci Technol. 2019 Feb 19;53(4):2151-2160 [PMID: 30652482]
  34. Ecotoxicol Environ Saf. 2019 Apr 15;170:25-32 [PMID: 30508752]
  35. Chemosphere. 2017 Dec;189:574-580 [PMID: 28963974]
  36. Reprod Toxicol. 2017 Mar;68:119-129 [PMID: 27421578]
  37. Environ Int. 2019 Jun;127:754-763 [PMID: 31003058]
  38. Arch Pediatr Adolesc Med. 2011 Nov;165(11):993-8 [PMID: 22065180]
  39. Environ Sci Technol. 2020 Mar 17;54(6):3375-3385 [PMID: 32106667]
  40. Annu Rev Clin Psychol. 2010;6:109-38 [PMID: 20192788]
  41. Environ Pollut. 2023 Jan 1;316(Pt 1):120516 [PMID: 36341822]
  42. Environ Int. 2015 May;78:1-7 [PMID: 25677852]
  43. J Clin Epidemiol. 2012 Oct;65(10):1078-87 [PMID: 22818946]
  44. Sci Total Environ. 2023 Jan 20;857(Pt 1):159322 [PMID: 36220473]
  45. J Biochem Mol Toxicol. 2013 Feb;27(2):124-36 [PMID: 23139171]
  46. Obesity (Silver Spring). 2020 Sep;28(9):1698-1707 [PMID: 32734695]
  47. Int J Obes (Lond). 2021 Jan;45(1):25-35 [PMID: 33208860]
  48. Biol Sex Differ. 2013 Mar 21;4(1):5 [PMID: 23514128]
  49. Environ Sci Technol. 2014 May 6;48(9):4782-9 [PMID: 24738854]
  50. Environ Int. 2020 Jun;139:105698 [PMID: 32278199]
  51. Environ Health. 2016 Nov 25;15(1):113 [PMID: 27884139]
  52. Environ Health Perspect. 2021 Apr;129(4):47010 [PMID: 33851871]
  53. Drug Metab Dispos. 2010 Oct;38(10):1623-35 [PMID: 20606001]
  54. Endocrinology. 2015 Oct;156(10):3422-34 [PMID: 26241064]
  55. Chemosphere. 2012 Sep;88(11):1276-82 [PMID: 22551874]

Word Cloud

Created with Highcharts 10.0.0growthtrajectorieschildexposureincreaseOPEeffectschildrenassociatedhigherprenatalTBEPconcentration20z-scoreorganophosphateestersex-specificimpactOPEsstudymaternalserumtrajectorytrisphosphateAmongmale72 ng/glipidHCAZmainlyconcentratedmonthsagefemaleTDCPPLAZWAZoddsfastgroupSex-specificconnectionsurinarymetabolitesidentifiedpriorresearchcurrentlydearthepidemiologicalevidenceregardingenrolled804maternal-childpairsfivecongenersquantifiedpregnancyassessedusinglinearmixed-effectmodelsgroup-basedmodelGBTMconsiderationgivenFetusesfrequentlyexposedutero2-butoxyethelexhibitedhighestlevels11-unitheadcircumference-for-ageeffect12-chloro-1-chloromethylethyl15-unitlength-for-age14-unitweight-for-age9analysisapproachprovidedinsightcomplexassociationsfirsttwoyearsBirthcohortChildOrganophosphateesters

Similar Articles

Cited By