Glucocorticoids modulate neural activity via a rapid non-genomic effect on Kv2.2 channels in the central nervous system.

Yuqi Wang, Yuchen Zhang, Jiawei Hu, Chengfang Pan, Yiming Gao, Qingzhuo Liu, Wendong Xu, Lei Xue, Changlong Hu
Author Information
  1. Yuqi Wang: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.
  2. Yuchen Zhang: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.
  3. Jiawei Hu: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.
  4. Chengfang Pan: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.
  5. Yiming Gao: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.
  6. Qingzhuo Liu: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.
  7. Wendong Xu: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.
  8. Lei Xue: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.
  9. Changlong Hu: State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, PR China.

Abstract

Glucocorticoids are primary stress hormones that exert neuronal effects via both genomic and non-genomic signaling pathways. However, their rapid non-genomic effects and underlying mechanisms on neural activities remain elusive. In the present study, we investigated the rapid non-genomic effect of glucocorticoids on Kv2.2 channels in cultured HEK293 cells and acute brain slices including cortical pyramidal neurons and calyx-type synapses in the brain stem. We found that cortisol, the endogenous glucocorticoids, rapidly increased Kv2.2 currents by increasing the single-channel open probability in Kv2.2-expressing HEK293 cells through activation of the membrane-associated glucocorticoid receptor. Bovine serum albumin-conjugated dexamethasone, a membrane-impermeable agonist of the glucocorticoid receptor, could mimic the effect of cortisol on Kv2.2 channels. The cortisol-increased Kv2.2 currents were induced by activation of the extracellular signal-regulated protein kinase (ERK) 1/2 kinase, which could be inhibited by U0126, an antagonist of the ERK signaling pathway. In layer 2 cortical pyramidal neurons and the calyx of Held synapses, cortisol suppressed the action potential firing frequency during depolarization and reduced the successful rate upon high-frequency stimulation by activating Kv2.2 channels. We further examined the postsynaptic responses and found that cortisol did not affect the mEPSC and evoked EPSC, but increased the activity-dependent synaptic depression induced by a high-frequency stimulus train. In conclusion, glucocorticoids can rapidly activate Kv2.2 channels through membrane-associated glucocorticoid receptors via the ERK1/2 signaling pathway, suppress presynaptic action potential firing, and inhibit synaptic transmission and plasticity. This may be a universal mechanism of the glucocorticoid-induced non-genomic effects in the central nervous system.

Keywords

References

  1. Trends Pharmacol Sci. 2019 Jan;40(1):38-49 [PMID: 30497693]
  2. J Allergy Clin Immunol. 2013 Nov;132(5):1033-44 [PMID: 24084075]
  3. Stress. 2011 Jul;14(4):398-406 [PMID: 21663538]
  4. Pharmacol Rev. 2005 Dec;57(4):473-508 [PMID: 16382104]
  5. PLoS Biol. 2022 Sep 12;20(9):e3001783 [PMID: 36095010]
  6. Endocrinology. 2008 Nov;149(11):5482-90 [PMID: 18617609]
  7. Neuron. 2001 Apr;30(1):171-82 [PMID: 11343653]
  8. Stem Cell Res Ther. 2022 Jan 10;13(1):5 [PMID: 35012661]
  9. J Physiol. 1999 Aug 15;519 Pt 1:261-72 [PMID: 10432356]
  10. Endocr Rev. 2020 Jun 1;41(3): [PMID: 32060528]
  11. J Endocrinol. 2004 Mar;180(3):449-55 [PMID: 15012599]
  12. Neuron. 2011 Jul 28;71(2):291-305 [PMID: 21791288]
  13. Mol Cell Proteomics. 2013 Jul;12(7):1764-79 [PMID: 23339905]
  14. J Neurosci. 1995 Jan;15(1 Pt 2):903-11 [PMID: 7823188]
  15. J Neurosci. 2003 Jun 15;23(12):4850-7 [PMID: 12832507]
  16. Acta Pharmacol Sin. 2005 Feb;26(2):199-204 [PMID: 15663899]
  17. Am J Physiol Endocrinol Metab. 2004 Apr;286(4):E626-33 [PMID: 14656715]
  18. Nat Rev Endocrinol. 2017 Nov;13(11):661-673 [PMID: 28862266]
  19. Biochim Biophys Acta. 2002 Aug 19;1591(1-3):21-7 [PMID: 12183051]
  20. Endocrinology. 2018 Jan 1;159(1):46-64 [PMID: 29029225]
  21. Am J Physiol Lung Cell Mol Physiol. 2004 Apr;286(4):L756-66 [PMID: 14644757]
  22. Nat Rev Neurosci. 2002 Jan;3(1):53-64 [PMID: 11823805]
  23. J Physiol. 2008 Jul 15;586(14):3493-509 [PMID: 18511484]
  24. Membranes (Basel). 2021 Mar 09;11(3): [PMID: 33803465]
  25. Nat Commun. 2019 Apr 23;10(1):1859 [PMID: 31015414]
  26. Hypertension. 2016 Sep;68(3):785-95 [PMID: 27432863]
  27. Annu Rev Physiol. 2014;76:301-31 [PMID: 24274740]
  28. Eur J Neurosci. 2008 May;27(10):2542-50 [PMID: 18547242]
  29. J Neurosci. 2014 Apr 2;34(14):4991-5002 [PMID: 24695716]
  30. eNeuro. 2021 May 5;8(3): [PMID: 33837049]
  31. Biochem Biophys Res Commun. 2018 Apr 15;498(4):1078-1084 [PMID: 29555470]
  32. Exp Neurol. 2014 Jan;251:115-26 [PMID: 24252178]
  33. J Neurosci. 2005 Aug 24;25(34):7792-800 [PMID: 16120780]
  34. ALTEX. 2020 Oct 06;38(1):111-122 [PMID: 33086382]
  35. Eur J Endocrinol. 2019 Feb 1;180(2):R73-R89 [PMID: 30481157]
  36. J Neurosci. 2020 Jan 2;40(1):12-21 [PMID: 31896560]
  37. Oncotarget. 2017 Apr 18;8(16):27339-27352 [PMID: 28423696]
  38. Horm Behav. 2018 Aug;104:183-191 [PMID: 29775570]
  39. J Neurosci. 2020 Oct 14;40(42):8070-8087 [PMID: 32948677]
  40. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2880-5 [PMID: 16481620]
  41. J Proteomics. 2012 Apr 3;75(7):2064-79 [PMID: 22270012]
  42. J Physiol. 2010 Dec 15;588(Pt 24):4987-94 [PMID: 21041528]
  43. J Pharmacol Exp Ther. 2010 Feb;332(2):437-45 [PMID: 19915071]
  44. Neurosci Bull. 2022 Feb;38(2):135-148 [PMID: 34542799]
  45. Neuroscience. 1995 Nov;69(1):83-8 [PMID: 8637635]
  46. J Physiol. 2017 Jan 1;595(1):193-206 [PMID: 27229184]
  47. Nat Med. 2002 May;8(5):473-9 [PMID: 11984591]
  48. Eur J Neurosci. 2006 Dec;24(12):3365-71 [PMID: 17229085]
  49. Neuroscience. 2005;130(2):485-96 [PMID: 15664705]
  50. J Neurosci. 2015 Oct 28;35(43):14585-601 [PMID: 26511248]
  51. Compr Physiol. 2016 Mar 15;6(2):603-21 [PMID: 27065163]
  52. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E4091-E4100 [PMID: 29632168]
  53. Trends Pharmacol Sci. 2013 Sep;34(9):518-30 [PMID: 23953592]
  54. J Neurophysiol. 1997 Jun;77(6):3396-400 [PMID: 9212285]
  55. Neurobiol Stress. 2019 Apr 04;10:100161 [PMID: 31309134]
  56. Neuropsychopharmacology. 2016 Jan;41(1):3-23 [PMID: 26076834]
  57. Protein Cell. 2019 Sep;10(9):688-693 [PMID: 31028590]
  58. J Neurosci. 2015 Nov 04;35(44):14922-42 [PMID: 26538660]
  59. Br J Pharmacol. 2002 Sep;137(1):87-97 [PMID: 12183334]
  60. J Neurosci. 1993 Sep;13(9):3839-47 [PMID: 8396170]
  61. Steroids. 2009 Apr-May;74(4-5):449-55 [PMID: 19162058]
  62. Neuroscience. 1985 Aug;15(4):1045-7 [PMID: 3876521]
  63. J Physiol. 2010 Sep 1;588(Pt 17):3187-200 [PMID: 20519310]
  64. Prog Neuropsychopharmacol Biol Psychiatry. 2005 Dec;29(8):1201-13 [PMID: 16271821]
  65. Neuroscience. 2003;119(3):887-97 [PMID: 12809708]
  66. Biol Psychiatry. 2013 Nov 1;74(9):672-9 [PMID: 23683655]
  67. J Comp Neurol. 2010 Nov 1;518(21):4298-310 [PMID: 20853508]
  68. Eur J Pharmacol. 2015 Jan 5;746:158-66 [PMID: 25449034]
  69. Trends Endocrinol Metab. 2019 Nov;30(11):783-792 [PMID: 31699237]
  70. J Neurosci. 2013 May 22;33(21):9113-21 [PMID: 23699522]
  71. Biochem Biophys Res Commun. 2001 Oct 5;287(4):1017-24 [PMID: 11573966]
  72. Steroids. 2006 Apr;71(4):323-8 [PMID: 16298406]
  73. J Neurosci. 2007 Mar 14;27(11):3046-56 [PMID: 17360928]
  74. J Neurosci. 2011 Jul 20;31(29):10506-15 [PMID: 21775596]
  75. Endocrinology. 2006 Dec;147(12):5549-56 [PMID: 16946006]
  76. Neurobiol Stress. 2019 Mar 21;10:100158 [PMID: 31193551]
  77. Psychoneuroendocrinology. 2016 Jan;63:119-27 [PMID: 26441230]
  78. Hear Res. 2016 Aug;338:22-31 [PMID: 27018297]
  79. J Physiol. 2013 Oct 1;591(19):4807-25 [PMID: 23878373]
  80. Neurosci Lett. 2021 Apr 17;750:135763 [PMID: 33617945]
  81. Int J Mol Sci. 2022 May 14;23(10): [PMID: 35628305]
  82. Mol Endocrinol. 2010 Mar;24(3):497-510 [PMID: 20160127]
  83. Arthritis Rheum. 2011 Dec;63(12):3779-88 [PMID: 21898343]
  84. J Neurosci. 2019 Apr 17;39(16):2981-2994 [PMID: 30679394]
  85. J Neurophysiol. 2004 Jan;91(1):561-70 [PMID: 12904339]

Word Cloud

Created with Highcharts 10.0.0Kv22non-genomicchannelseffectcortisoleffectsviasignalingrapidglucocorticoidsglucocorticoidGlucocorticoidsneuralHEK293 cellsbraincorticalpyramidalneuronssynapsesfoundrapidlyincreasedcurrentsactivationmembrane-associatedreceptorinducedkinaseERKpathwayactionpotentialfiringhigh-frequencysynapticcentralnervoussystemactivityprimarystresshormonesexertneuronalgenomicpathwaysHoweverunderlyingmechanismsactivitiesremainelusivepresentstudyinvestigatedculturedacuteslicesincludingcalyx-typestemendogenousincreasingsingle-channelopenprobability2-expressingBovineserumalbumin-conjugateddexamethasonemembrane-impermeableagonistmimiccortisol-increasedextracellularsignal-regulatedprotein1/2inhibitedU0126antagonistlayercalyxHeldsuppressedfrequencydepolarizationreducedsuccessfulrateuponstimulationactivatingexaminedpostsynapticresponsesaffectmEPSCevokedEPSCactivity-dependentdepressionstimulustrainconclusioncanactivatereceptorsERK1/2suppresspresynapticinhibittransmissionplasticitymayuniversalmechanismglucocorticoid-inducedmodulateGlucocorticoidchannelNeuralNon-genomic

Similar Articles

Cited By