Comparative analysis of simulated colonization and degradation by on oak wafer and corn stalk.

Chunye Mou, Yuhua Gong, Lianfu Chen, Francis Martin, Heng Kang, Yinbing Bian
Author Information
  1. Chunye Mou: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  2. Yuhua Gong: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  3. Lianfu Chen: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  4. Francis Martin: Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France.
  5. Heng Kang: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  6. Yinbing Bian: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Abstract

Introduction: The depolymerization of lignocellulose biomass by white-rot fungi has been an important research topic. However, few simulated in-situ analyses have been conducted to uncover the decay.
Methods: In this study, the white-rot Lentinula edodes was used to colonize the wood and non-wood substrates, and then hyphal transcriptional response and substrate degradation were analyzed during the spatial-temporal colonization on different type substrates to better understand the depolymerization of lignocellulose.
Results and discussion: Faster growth and thicker mat of hyphae on corn stalk were observed in comparison to oak wafer. Coincide with the higher levels of gene transcripts related to protein synthesis on corn stalk. The higher lignin oxidase activity of hyphae was detected on oak wafer, and the higher cellulase activity was observed on corn stalk containing a much higher content of soluble sugars. A large number of carbohydrate-binding module (CBM1 and CBM20)-containing enzyme genes, including lytic polysaccharide monooxygenase (AA9), cellobiohydrolase (GH6 and GH7), glucanase (GH5), xylanase (GH10 and GH11), glucoamylase (GH15), and alpha-amylase (GH13), were significantly upregulated in the back-distal hyphae colonized on corn stalk. The hyphae tended to colonize and degrade the secondary cell wall, and the deposited oxalate crystal suggested that oxalate may play an important role during lignocellulose degradation. In addition, lignin was degraded in priority in oak wafer. Of note, three lignin monomers were degraded simultaneously in oak wafer but sequentially in corn stalk. This growth Our results indicated that the white-rot degradation pattern of lignocellulose is determined by the chemical composition and structure of the colonized biomass.

Keywords

References

  1. Front Microbiol. 2020 May 27;11:1044 [PMID: 32536907]
  2. Front Microbiol. 2020 Apr 17;11:707 [PMID: 32362887]
  3. Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10968-73 [PMID: 27621450]
  4. Planta. 2000 Aug;211(3):406-14 [PMID: 10987560]
  5. Bioresour Technol. 2014 Oct;169:447-454 [PMID: 25079210]
  6. Adv Appl Microbiol. 2012;78:121-49 [PMID: 22305095]
  7. ISME J. 2019 Apr;13(4):977-988 [PMID: 30538275]
  8. PLoS One. 2014 Sep 24;9(9):e108449 [PMID: 25251456]
  9. Biotechnol Biofuels. 2016 Feb 29;9:49 [PMID: 26933449]
  10. Mol Biol Evol. 2021 Apr 13;38(4):1428-1446 [PMID: 33211093]
  11. Bioresour Technol. 2014 Sep;167:14-23 [PMID: 24968107]
  12. Biotechnol Adv. 2009 Mar-Apr;27(2):185-94 [PMID: 19100826]
  13. Biochemistry. 2011 Feb 15;50(6):989-1000 [PMID: 21204530]
  14. Mol Phylogenet Evol. 2022 Aug;173:107494 [PMID: 35490968]
  15. Appl Microbiol Biotechnol. 2019 Jul;103(14):5641-5652 [PMID: 31115636]
  16. Microb Biotechnol. 2013 May;6(3):248-63 [PMID: 23279857]
  17. Adv Microb Physiol. 1999;41:47-92 [PMID: 10500844]
  18. Biotechnol Biofuels. 2013 Dec 16;6(1):183 [PMID: 24341349]
  19. Nucleic Acids Res. 2022 Jan 7;50(D1):D27-D38 [PMID: 34718731]
  20. Bioresour Technol. 2019 Dec;294:122164 [PMID: 31563115]
  21. RSC Adv. 2019 Feb 12;9(10):5347-5353 [PMID: 35515944]
  22. Fungal Genet Biol. 2014 Nov;72:48-63 [PMID: 25011009]
  23. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63 [PMID: 22434909]
  24. Appl Environ Microbiol. 1994 Apr;60(4):1383-6 [PMID: 16349245]
  25. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6428-6433 [PMID: 29866821]
  26. Curr Genet. 2016 Aug;62(3):533-45 [PMID: 26879194]
  27. Science. 2012 Jun 29;336(6089):1715-9 [PMID: 22745431]
  28. Appl Environ Microbiol. 1991 May;57(5):1453-60 [PMID: 1854201]
  29. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  30. Front Microbiol. 2022 Jun 20;13:910255 [PMID: 35801117]
  31. Front Microbiol. 2017 Feb 17;8:237 [PMID: 28261189]
  32. Mol Biol Evol. 2018 Jul 1;35(7):1616-1625 [PMID: 29684170]
  33. mBio. 2019 Nov 19;10(6): [PMID: 31744914]
  34. Appl Environ Microbiol. 2015 Nov;81(22):7802-12 [PMID: 26341198]
  35. ISME J. 2020 Aug;14(8):2046-2059 [PMID: 32382073]
  36. Bioresour Technol. 2015 Dec;197:266-75 [PMID: 26342338]
  37. Appl Environ Microbiol. 2009 Jun;75(12):4058-68 [PMID: 19376920]
  38. Environ Microbiol. 2018 Nov;20(11):4141-4156 [PMID: 30246402]
  39. Front Microbiol. 2022 Feb 24;13:811673 [PMID: 35283832]
  40. New Phytol. 2018 Dec;220(4):1309-1321 [PMID: 29624684]
  41. PLoS One. 2016 Aug 08;11(8):e0160336 [PMID: 27500531]
  42. Appl Environ Microbiol. 1994 Jul;60(7):2524-32 [PMID: 16349330]
  43. Int Microbiol. 2005 Sep;8(3):195-204 [PMID: 16200498]
  44. ISME J. 2021 Feb;15(2):592-604 [PMID: 33077886]
  45. Appl Environ Microbiol. 2011 May;77(10):3211-8 [PMID: 21441342]
  46. Appl Environ Microbiol. 2017 Mar 17;83(7): [PMID: 28130302]
  47. Biotechnol Biofuels. 2017 Mar 16;10:67 [PMID: 28331543]
  48. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):578-583 [PMID: 34400360]
  49. Nat Genet. 2015 Apr;47(4):410-5 [PMID: 25706625]
  50. Appl Environ Microbiol. 2018 Aug 1;84(16): [PMID: 29884760]
  51. J Proteomics. 2017 Jun 23;163:92-101 [PMID: 28483534]
  52. Curr Opin Biotechnol. 2009 Jun;20(3):348-57 [PMID: 19502047]
  53. Biotechnol Biofuels. 2016 Feb 20;9:42 [PMID: 26900401]
  54. Biotechnol Biofuels. 2018 Mar 02;11:58 [PMID: 29507610]
  55. Science. 2007 Feb 9;315(5813):804-7 [PMID: 17289988]
  56. Biotechnol Biofuels. 2021 Apr 17;14(1):96 [PMID: 33865436]
  57. Saudi J Biol Sci. 2019 May;26(4):633-646 [PMID: 31048986]

Word Cloud

Created with Highcharts 10.0.0cornstalklignocellulosedegradationoakwaferwhite-rothyphaehigherlignindepolymerizationbiomassimportantsimulatedcolonizesubstratescolonizationgrowthobservedactivitycarbohydrate-bindingmodulecolonizedoxalatedegradedIntroduction:fungiresearchtopicHoweverin-situanalysesconducteduncoverdecayMethods:studyLentinulaedodesusedwoodnon-woodhyphaltranscriptionalresponsesubstrateanalyzedspatial-temporaldifferenttypebetterunderstandResultsdiscussion:FasterthickermatcomparisonCoincidelevelsgenetranscriptsrelatedproteinsynthesisoxidasedetectedcellulasecontainingmuchcontentsolublesugarslargenumberCBM1CBM20-containingenzymegenesincludinglyticpolysaccharidemonooxygenaseAA9cellobiohydrolaseGH6GH7glucanaseGH5xylanaseGH10GH11glucoamylaseGH15alpha-amylaseGH13significantlyupregulatedback-distaltendeddegradesecondarycellwalldepositedcrystalsuggestedmayplayroleadditionprioritynotethreemonomerssimultaneouslysequentiallyresultsindicatedpatterndeterminedchemicalcompositionstructureComparativeanalysiscompositionalchangescanningelectronmicroscopytranscriptomefungus

Similar Articles

Cited By