Development of sensitizer peptide-fused endolysin Lys1S-L9P acting against multidrug-resistant gram-negative bacteria.

Su Min Son, Joonbeom Kim, Sangryeol Ryu
Author Information
  1. Su Min Son: Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
  2. Joonbeom Kim: Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
  3. Sangryeol Ryu: Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.

Abstract

The advent of multidrug-resistant (MDR) bacteria poses a major threat to public health, garnering attention to novel antibiotic replacements. Endolysin, a bacteriophage-derived cell wall-degrading enzyme, is a promising alternative to conventional antibiotics. However, it is challenging to control Gram-negative bacteria due to the presence of the outer membrane that shields the peptidoglycan layer from enzymatic degradation. To overcome this threshold, we constructed the fusion endolysin Lys1S-L9P by combining endolysin LysSPN1S with KL-L9P, a sensitizer peptide known to extend efficacy of antibiotics by perturbing the outer membrane of Gram-negative bacteria. In addition, we established a new endolysin purification procedure that increases solubility allowing a 4-fold increase in production yield of Lys1S-L9P. The sensitizer peptide-fused endolysin Lys1S-L9P exhibited high bactericidal effects against many MDR Gram-negative pathogens and was more effective in eradicating biofilms compared to LysSPN1S. Moreover, Lys1S-L9P showed potential for clinical use, maintaining stability at various storage temperatures without cytotoxicity against human cells. In the model, Lys1S-L9P demonstrated potent antibacterial activity against MDR Gram-negative bacteria without inducing any toxic activity. This study suggest that Lys1S-L9P could be a potential biocontrol agent to combat MDR Gram-negative bacteria.

Keywords

References

  1. J Antimicrob Chemother. 2013 Aug;68(8):1818-24 [PMID: 23557924]
  2. J Infect. 2019 Dec;79(6):593-600 [PMID: 31580871]
  3. Pathog Dis. 2020 Nov 23;78(9): [PMID: 32970818]
  4. Sci Rep. 2020 Jul 21;10(1):12087 [PMID: 32694655]
  5. Methods Mol Biol. 2017;1512:163-169 [PMID: 27885606]
  6. Antimicrob Agents Chemother. 2017 Jun 27;61(7): [PMID: 28461319]
  7. FEMS Immunol Med Microbiol. 2002 Oct 11;34(2):153-7 [PMID: 12381467]
  8. Antimicrob Agents Chemother. 2019 May 24;63(6): [PMID: 30962344]
  9. Antibiotics (Basel). 2020 Mar 02;9(3): [PMID: 32131426]
  10. Adv Appl Microbiol. 2012;78:25-53 [PMID: 22305092]
  11. Ann Clin Microbiol Antimicrob. 2017 May 10;16(1):34 [PMID: 28486994]
  12. Exp Biol Med (Maywood). 2006 Apr;231(4):366-77 [PMID: 16565432]
  13. J Microbiol Biotechnol. 2022 Jun 28;32(6):816-823 [PMID: 35586934]
  14. J Med Chem. 2010 Mar 11;53(5):1898-916 [PMID: 19874036]
  15. J Glob Antimicrob Resist. 2022 Sep;30:31-37 [PMID: 35447383]
  16. Trends Microbiol. 2000 Mar;8(3):120-8 [PMID: 10707065]
  17. J Chin Med Assoc. 2018 Jan;81(1):7-11 [PMID: 29042186]
  18. Foods. 2023 Jan 15;12(2): [PMID: 36673503]
  19. Microorganisms. 2020 Nov 02;8(11): [PMID: 33147701]
  20. Microorganisms. 2019 Sep 12;7(9): [PMID: 31547260]
  21. Sci Adv. 2020 Jun 03;6(23):eaaz1136 [PMID: 32537492]
  22. Cureus. 2022 Sep 21;14(9):e29404 [PMID: 36304345]
  23. Appl Microbiol Biotechnol. 2017 Jan;101(2):673-684 [PMID: 27766357]
  24. Biochim Biophys Acta. 1983 Mar 21;737(1):51-115 [PMID: 6337630]
  25. Trends Microbiol. 2005 Oct;13(10):491-6 [PMID: 16125935]
  26. Food Microbiol. 2019 Dec;84:103245 [PMID: 31421782]
  27. PLoS Biol. 2007 Nov;5(11):e307 [PMID: 18001153]
  28. Front Microbiol. 2022 Sep 26;13:988522 [PMID: 36225352]
  29. Antimicrob Agents Chemother. 2003 Nov;47(11):3407-14 [PMID: 14576095]
  30. Medicine (Baltimore). 2019 Mar;98(13):e14937 [PMID: 30921191]
  31. Med Mycol. 2011 Apr;49 Suppl 1:S107-13 [PMID: 20950221]
  32. Adv Drug Deliv Rev. 2013 Oct;65(10):1357-69 [PMID: 23026637]
  33. Front Microbiol. 2021 Feb 01;12:619028 [PMID: 33597938]
  34. Front Microbiol. 2022 Feb 15;13:821936 [PMID: 35242119]
  35. Microbiol Spectr. 2022 Aug 31;10(4):e0129522 [PMID: 35861511]
  36. ACS Infect Dis. 2021 Aug 13;7(8):2192-2204 [PMID: 34232613]
  37. Antimicrob Agents Chemother. 2015 Apr;59(4):1983-91 [PMID: 25605353]
  38. Viruses. 2023 Mar 04;15(3): [PMID: 36992387]
  39. Antimicrob Agents Chemother. 2016 May 23;60(6):3480-8 [PMID: 27021321]
  40. Biofouling. 2021 Feb;37(2):184-193 [PMID: 33615928]
  41. Mol Biol Rep. 2022 May;49(5):3811-3822 [PMID: 35169997]
  42. J Biomed Sci. 2023 Apr 26;30(1):29 [PMID: 37101261]
  43. Int J Mol Sci. 2023 Mar 17;24(6): [PMID: 36982851]
  44. Res Microbiol. 2012 Apr;163(3):233-41 [PMID: 22289622]
  45. Appl Microbiol Biotechnol. 2007 Mar;74(4):730-8 [PMID: 17221194]
  46. Int J Food Microbiol. 2017 Mar 6;244:19-26 [PMID: 28063330]
  47. J Med Chem. 2020 Dec 10;63(23):14937-14950 [PMID: 33205989]
  48. J Vis Exp. 2010 Dec 03;(46): [PMID: 21178960]
  49. Curr Opin Microbiol. 2005 Aug;8(4):480-7 [PMID: 15979390]

Word Cloud

Created with Highcharts 10.0.0bacteriaendolysinLys1S-L9PGram-negativeMDRsensitizermultidrug-resistantantibioticsoutermembranefusionLysSPN1Speptidepeptide-fusedpotentialwithoutactivityagentgram-negativeadventposesmajorthreatpublichealthgarneringattentionnovelantibioticreplacementsEndolysinbacteriophage-derivedcellwall-degradingenzymepromisingalternativeconventionalHoweverchallengingcontrolduepresenceshieldspeptidoglycanlayerenzymaticdegradationovercomethresholdconstructedcombiningKL-L9Pknownextendefficacyperturbingadditionestablishednewpurificationprocedureincreasessolubilityallowing4-foldincreaseproductionyieldexhibitedhighbactericidaleffectsmanypathogenseffectiveeradicatingbiofilmscomparedMoreovershowedclinicalusemaintainingstabilityvariousstoragetemperaturescytotoxicityhumancellsmodeldemonstratedpotentantibacterialinducingtoxicstudysuggestbiocontrolcombatDevelopmentactingantimicrobialmultidrugresistance

Similar Articles

Cited By