Gene structure and potential regulation of the lycopene cyclase genes in L.

G Rivero-Manzanilla, J A Narváez-Zapata, M Aguilar-Espinosa, V M Carballo-Uicab, R Rivera-Madrid
Author Information
  1. G Rivero-Manzanilla: Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C. Calle 43 # 130, Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico.
  2. J A Narváez-Zapata: Instituto Politécnico Nacional - Centro de Biotecnología Genómica, Blvd Del Maestro esq. Elias Piña, 88710 Reynosa, Tamaulipas Mexico.
  3. M Aguilar-Espinosa: Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C. Calle 43 # 130, Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico.
  4. V M Carballo-Uicab: Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C. Calle 43 # 130, Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico.
  5. R Rivera-Madrid: Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C. Calle 43 # 130, Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico. ORCID

Abstract

Lycopene cyclases (LCYs) are a key branching point in regulating the carotenoid biosynthesis pathway in plants. L. is characterized by the presence in its seed of bixin, an apocarotenoid of significant importance in the food, pharmaceutical, and cosmetic industries. Gene analysis provides the opportunity to investigate the gene structure in plant species and its relationship with the synthesis of carotenoids. Coding sequences of the genes were retrieved from a genome DNA. and genes exhibit 100% of identity to their respective cDNA accessions, and exhibit a single coding region of 1512 bp (504 aa) and 1495 bp (498 aa), respectively. In contrast, gene shows a coding region of 1581 bp (527 aa) with 10 introns of diverse lengths. Putative Transcription Factors (TFs) binding sites were upstream (3000 bp) identified for each gene. TFs cover two groups, one with the categories of photosynthesis, reproduction, and oxidative processes that are frequent. The second one with the categories of defense, cell cycle, signaling, and carbohydrate metabolism, which are poorly represented. Besides, repetitive DNA elements showed motifs and proteins related to LTR from the Ty3/Gypsy family, were associated with the TFs regions. In general, TFs vary in the different genes, being more abundant in the gene. expression analyzed from a transcriptome database, and validated by RT-qPCR, shows an upregulation of the three , mainly oriented to the synthesis of essential carotenoids in photosynthetic tissues (leaves), as well as an upregulation of the gene in the non-photosynthetic tissues (firsts seed development stages) related to the bixin accumulation.
Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01384-8.

Keywords

References

  1. J Exp Bot. 2010;61(1):33-9 [PMID: 19887502]
  2. PLoS One. 2014 Oct 03;9(10):e109920 [PMID: 25279462]
  3. Plants (Basel). 2021 Apr 07;10(4): [PMID: 33916912]
  4. Sheng Wu Gong Cheng Xue Bao. 2007 May;23(3):429-33 [PMID: 17577988]
  5. Curr Opin Plant Biol. 2017 Jun;37:49-55 [PMID: 28411584]
  6. Mol Plant. 2015 Jan;8(1):68-82 [PMID: 25578273]
  7. Plant J. 2000 Feb;21(3):281-8 [PMID: 10758479]
  8. Plant Sci. 2019 Apr;281:52-60 [PMID: 30824061]
  9. J Integr Plant Biol. 2008 Jul;50(7):778-85 [PMID: 18713388]
  10. PLoS One. 2015 Sep 01;10(9):e0137295 [PMID: 26327607]
  11. Sci China Life Sci. 2016 Feb;59(2):112-21 [PMID: 26687725]
  12. Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268 [PMID: 31777944]
  13. BMC Plant Biol. 2019 Dec 23;19(1):578 [PMID: 31870303]
  14. J Exp Bot. 2009;60(13):3765-79 [PMID: 19574250]
  15. J Agric Food Chem. 2020 Oct 28;68(43):11895-11907 [PMID: 33073992]
  16. Planta. 2018 Aug;248(2):267-277 [PMID: 29748818]
  17. J Exp Bot. 2009;60(6):1783-97 [PMID: 19325166]
  18. BMC Genomics. 2015 Oct 28;16:877 [PMID: 26511010]
  19. BMC Plant Biol. 2010 Apr 09;10:61 [PMID: 20380705]
  20. J Exp Bot. 2021 Mar 29;72(7):2544-2569 [PMID: 33484250]
  21. Plant Physiol. 2004 Mar;134(3):1080-7 [PMID: 14976239]
  22. Science. 2008 Jan 18;319(5861):330-3 [PMID: 18202289]
  23. Plant Cell. 2004 May;16(5):1077-90 [PMID: 15100398]
  24. PLoS One. 2019 May 20;14(5):e0214542 [PMID: 31107873]
  25. Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49 [PMID: 25953851]
  26. PLoS One. 2013;8(3):e58144 [PMID: 23555569]
  27. Mol Hortic. 2022 Jan 21;2(1):3 [PMID: 37789426]
  28. Plant Cell. 1996 Sep;8(9):1613-26 [PMID: 8837512]
  29. Phytochemistry. 2008 Jul;69(10):1997-2007 [PMID: 18538806]
  30. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  31. BMC Res Notes. 2011 Sep 05;4:319 [PMID: 21892935]
  32. Genomics Inform. 2014 Sep;12(3):87-97 [PMID: 25317107]
  33. Plant Mol Biol. 1998 Jul;37(5):859-69 [PMID: 9678581]
  34. Plant Physiol. 2020 Jul;183(3):1171-1183 [PMID: 32321841]
  35. Trends Plant Sci. 1999 Jun;4(6):232-235 [PMID: 10366880]
  36. Biomolecules. 2019 Dec 13;9(12): [PMID: 31847172]
  37. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:557-583 [PMID: 15012246]
  38. Plant Physiol. 2004 Apr;134(4):1718-32 [PMID: 15084732]
  39. Prog Lipid Res. 2004 May;43(3):228-65 [PMID: 15003396]
  40. Subcell Biochem. 2016;79:35-69 [PMID: 27485218]
  41. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  42. BMC Plant Biol. 2022 May 21;22(1):252 [PMID: 35597910]
  43. Hortic Res. 2019 Jun 22;6:80 [PMID: 31263564]
  44. J Nat Med. 2020 Jan;74(1):1-16 [PMID: 31588965]
  45. Plant Sci. 2020 Jan;290:110331 [PMID: 31779888]
  46. Nucleic Acids Res. 1999 Jan 1;27(1):297-300 [PMID: 9847208]
  47. Front Plant Sci. 2020 Nov 12;11:577536 [PMID: 33281844]
  48. Nucleic Acids Res. 2011 Jan;39(Database issue):D70-4 [PMID: 21036865]
  49. Front Plant Sci. 2023 Feb 15;14:1066509 [PMID: 36875614]
  50. Gene. 2012 Jul 15;503(1):147-51 [PMID: 22575730]
  51. Plant Mol Biol. 2001 Mar;45(5):577-85 [PMID: 11414616]
  52. Mol Biotechnol. 2009 May;42(1):84-90 [PMID: 19107604]
  53. Biomed Res Int. 2014;2014:708364 [PMID: 25250331]
  54. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 [PMID: 18440982]
  55. PeerJ. 2019 Jun 21;7:e7064 [PMID: 31275744]
  56. J Food Sci Technol. 2017 May;54(6):1729-1741 [PMID: 28559632]
  57. Physiol Mol Biol Plants. 2022 Apr;28(4):709-718 [PMID: 35592485]
  58. Subcell Biochem. 2016;79:3-33 [PMID: 27485217]
  59. Food Chem. 2019 Jun 15;283:131-140 [PMID: 30722852]

Word Cloud

Created with Highcharts 10.0.0genegenesTFsaaLycopeneLseedbixinGenestructuresynthesiscarotenoidsDNAexhibitcodingregionshows10onecategoriesrelatedupregulationtissuescyclasecyclasesLCYskeybranchingpointregulatingcarotenoidbiosynthesispathwayplantscharacterizedpresenceapocarotenoidsignificantimportancefoodpharmaceuticalcosmeticindustriesanalysisprovidesopportunityinvestigateplantspeciesrelationshipCodingsequencesretrievedgenome100%identityrespectivecDNAaccessionssingle1512 bp5041495 bp498respectivelycontrast1581 bp527intronsdiverselengthsPutativeTranscriptionFactorsbindingsitesupstream3000 bpidentifiedcovertwogroupsphotosynthesisreproductionoxidativeprocessesfrequentseconddefensecellcyclesignalingcarbohydratemetabolismpoorlyrepresentedBesidesrepetitiveelementsshowedmotifsproteinsLTRTy3/GypsyfamilyassociatedregionsgeneralvarydifferentabundantexpressionanalyzedtranscriptomedatabasevalidatedRT-qPCRthreemainlyorientedessentialphotosyntheticleaveswellnon-photosyntheticfirstsdevelopmentstagesaccumulationSupplementaryInformation:onlineversioncontainssupplementarymaterialavailable1007/s12298-023-01384-8potentialregulationlycopeneBixaorellanaBixinCarotenoidsTranscriptionalfactors

Similar Articles

Cited By