Multidimensional Widefield Infrared-Encoded Spontaneous Emission Microscopy: Distinguishing Chromophores by Ultrashort Infrared Pulses.

Chang Yan, Chenglai Wang, Jackson C Wagner, Jianyu Ren, Carlynda Lee, Yuhao Wan, Shizhen E Wang, Wei Xiong
Author Information
  1. Chang Yan: Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States. ORCID
  2. Chenglai Wang: Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
  3. Jackson C Wagner: Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States. ORCID
  4. Jianyu Ren: Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
  5. Carlynda Lee: Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States. ORCID
  6. Yuhao Wan: Department of Pathology, University of California San Diego, La Jolla, California 92093, United States.
  7. Shizhen E Wang: Department of Pathology, University of California San Diego, La Jolla, California 92093, United States.
  8. Wei Xiong: Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States. ORCID

Abstract

Photoluminescence (PL) imaging has broad applications in visualizing biological activities, detecting chemical species, and characterizing materials. However, the chemical information encoded in the PL images is often limited by the overlapping emission spectra of chromophores. Here, we report a PL microscopy based on the nonlinear interactions between mid-infrared and visible excitations on matters, which we termed MultiDimensional Widefield Infrared-encoded Spontaneous Emission (MD-WISE) microscopy. MD-WISE microscopy can distinguish chromophores that possess nearly identical emission spectra via conditions in a multidimensional space formed by three independent variables: the temporal delay between the infrared and the visible pulses (), the wavelength of visible pulses (��), and the frequencies of the infrared pulses (��). This method is enabled by two mechanisms: (1) modulating the optical absorption cross sections of molecular dyes by exciting specific vibrational functional groups and (2) reducing the PL quantum yield of semiconductor nanocrystals, which was achieved through strong field ionization of excitons. Importantly, MD-WISE microscopy operates under widefield imaging conditions with a field of view of tens of microns, other than the confocal configuration adopted by most nonlinear optical microscopies, which require focusing the optical beams tightly. By demonstrating the capacity of registering multidimensional information into PL images, MD-WISE microscopy has the potential of expanding the number of species and processes that can be simultaneously tracked in high-speed widefield imaging applications.

References

  1. J Am Chem Soc. 2015 Dec 16;137(49):15567-75 [PMID: 26597761]
  2. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  3. J Am Chem Soc. 2008 Jan 30;130(4):1274-84 [PMID: 18177042]
  4. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  5. Opt Lett. 2010 Mar 1;35(5):757-9 [PMID: 20195343]
  6. J Chem Phys. 2012 Nov 14;137(18):184201 [PMID: 23163363]
  7. Opt Express. 2009 Jul 6;17(14):12013-8 [PMID: 19582116]
  8. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  9. J Am Chem Soc. 2021 Jul 28;143(29):10809-10815 [PMID: 34270255]
  10. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  11. J Chem Phys. 2020 Oct 28;153(16):164309 [PMID: 33138413]
  12. J Phys Chem Lett. 2019 Apr 18;10(8):1967-1972 [PMID: 30942587]
  13. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):13-8 [PMID: 11752400]
  14. Science. 1999 Mar 12;283(5408):1670-6 [PMID: 10073924]
  15. J Chem Phys. 2021 Jul 14;155(2):020901 [PMID: 34266264]
  16. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18442-7 [PMID: 25512539]
  17. Nat Photonics. 2023 Oct;17(10):846-855 [PMID: 38162388]
  18. J Chem Phys. 2015 Oct 21;143(15):154201 [PMID: 26493900]
  19. J Chem Phys. 2009 Jul 28;131(4):044512 [PMID: 19655899]
  20. J Phys Chem B. 2005 Mar 24;109(11):5012-20 [PMID: 16863161]
  21. Opt Lett. 1994 Jun 1;19(11):780-2 [PMID: 19844443]
  22. Cancer Res. 2002 Feb 1;62(3):682-7 [PMID: 11830520]
  23. Nat Methods. 2008 Oct;5(10):877-9 [PMID: 18806792]
  24. Light Sci Appl. 2021 Apr 20;10(1):87 [PMID: 33879766]
  25. Cell. 2018 Nov 15;175(5):1430-1442.e17 [PMID: 30454650]
  26. Nat Nanotechnol. 2021 Dec;16(12):1355-1361 [PMID: 34811550]
  27. J Am Chem Soc. 2021 Mar 3;143(8):3060-3064 [PMID: 33596055]
  28. Spectrochim Acta A Mol Biomol Spectrosc. 2012 Jun;91:261-8 [PMID: 22381801]
  29. Angew Chem Int Ed Engl. 2014 Mar 3;53(10):2667-72 [PMID: 24482321]
  30. Nat Methods. 2004 Oct;1(1):73-8 [PMID: 16138413]
  31. Science. 1994 Nov 11;266(5187):1018-21 [PMID: 7973650]
  32. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7075-80 [PMID: 12756303]
  33. J Phys Chem B. 2021 Aug 12;125(31):8907-8918 [PMID: 34339200]
  34. J Am Chem Soc. 2021 Aug 4;143(30):11490-11499 [PMID: 34264654]
  35. Phys Chem Chem Phys. 2009 Feb 7;11(5):748-61 [PMID: 19290321]
  36. Science. 2006 Sep 15;313(5793):1642-5 [PMID: 16902090]
  37. J Phys Chem B. 2018 Aug 30;122(34):8122-8133 [PMID: 30067030]
  38. Nat Methods. 2006 Oct;3(10):793-5 [PMID: 16896339]
  39. J Phys Chem A. 2018 Jan 18;122(2):554-562 [PMID: 29251500]
  40. Sci Adv. 2019 Jul 19;5(7):eaav7127 [PMID: 31334347]
  41. J Chem Phys. 2022 May 7;156(17):174202 [PMID: 35525668]
  42. Science. 1998 Sep 25;281(5385):2013-6 [PMID: 9748157]
  43. Science. 2010 Oct 15;330(6002):353-6 [PMID: 20947760]
  44. Nat Mater. 2017 Nov;16(11):1136-1141 [PMID: 28920937]
  45. Nat Mater. 2020 Jan;19(1):56-62 [PMID: 31591529]
  46. Nat Commun. 2021 May 24;12(1):3077 [PMID: 34031402]

Grants

  1. R01 CA266486/NCI NIH HHS
  2. R35 GM138092/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0PLmicroscopyMD-WISEimagingvisiblepulsesopticalapplicationschemicalspeciesinformationimagesemissionspectrachromophoresnonlinearWidefieldSpontaneousEmissioncanconditionsmultidimensionalinfrared��fieldwidefieldPhotoluminescencebroadvisualizingbiologicalactivitiesdetectingcharacterizingmaterialsHoweverencodedoftenlimitedoverlappingreportbasedinteractionsmid-infraredexcitationsmatterstermedMultiDimensionalInfrared-encodeddistinguishpossessnearlyidenticalviaspaceformedthreeindependentvariables:temporaldelaywavelengthfrequenciesmethodenabledtwomechanisms:1modulatingabsorptioncrosssectionsmoleculardyesexcitingspecificvibrationalfunctionalgroups2reducingquantumyieldsemiconductornanocrystalsachievedstrongionizationexcitonsImportantlyoperatesviewtensmicronsconfocalconfigurationadoptedmicroscopiesrequirefocusingbeamstightlydemonstratingcapacityregisteringpotentialexpandingnumberprocessessimultaneouslytrackedhigh-speedMultidimensionalInfrared-EncodedMicroscopy:DistinguishingChromophoresUltrashortInfraredPulses

Similar Articles

Cited By (4)