Changes in mosquito species and blood meal composition associated with adulticide applications.

Dongmin Kim, Nathan D Burkett-Cadena, Lawrence E Reeves
Author Information
  1. Dongmin Kim: Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA. kimdongmin@ufl.edu.
  2. Nathan D Burkett-Cadena: Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA.
  3. Lawrence E Reeves: Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA. lereeves@ufl.edu.

Abstract

Although adulticide application is a pillar in the integrated management of nuisance and vector mosquitoes, non-target effects of adulticide applications within ecosystems are a substantial concern. However, the impacts of adulticide applications on non-target organisms are not necessarily detrimental, and in some cases, may provide benefits to certain organisms or wildlife. Here, we hypothesized that adulticide applications have beneficial non-target impacts on vertebrate wildlife through reduced biting pressure. To test this, we collected mosquitoes from ultra-low volume Permanone-treated (intervention) and untreated (reference) areas and assessed mosquito abundance and diversity, and abundance of blood-engorged female mosquitoes. We performed DNA barcoding analysis on mosquito blood meals to identify host species. Our results demonstrated a significant reduction in mosquito abundance by 58.9% in the intervention areas, taking into account the reduction in reference areas. Consequently, this decline led to a 64.5% reduction in the abundance of blood-engorged females. We also found a temporal dynamic of mosquito composition driven by mosquito control actions in which different mosquito species became dominant at treated sites while composition at reference areas remained similar during the same period. The present study suggests that the beneficial effects of mosquito control treatments for humans extend to other vertebrates, which represents an unstudied and rarely recognized non-target impact.

References

  1. Ann N Y Acad Sci. 2001 Dec;951:13-24 [PMID: 11797771]
  2. Int J Environ Res Public Health. 2011 Jun;8(6):2142-52 [PMID: 21776222]
  3. J Am Vet Med Assoc. 1981 Dec 15;179(12):1397-400 [PMID: 7341572]
  4. PLoS Negl Trop Dis. 2018 Apr 06;12(4):e0006378 [PMID: 29624581]
  5. J Med Entomol. 1971 Dec 30;8(6):687-95 [PMID: 4403447]
  6. Ann N Y Acad Sci. 2012 Feb;1249:211-26 [PMID: 22320256]
  7. J Am Mosq Control Assoc. 2019 Dec;35(4):267-278 [PMID: 31922942]
  8. J Am Mosq Control Assoc. 2001 Dec;17(4):221-4 [PMID: 11804457]
  9. J Wildl Dis. 2015 Jul;51(3):576-88 [PMID: 25919466]
  10. J Am Mosq Control Assoc. 2003 Mar;19(1):33-8 [PMID: 12674532]
  11. PLoS One. 2015 Apr 21;10(4):e0123871 [PMID: 25898278]
  12. PLoS Negl Trop Dis. 2018 Aug 30;12(8):e0006767 [PMID: 30161128]
  13. PLoS Negl Trop Dis. 2018 Oct 24;12(10):e0006544 [PMID: 30356237]
  14. Infect Genet Evol. 2012 Dec;12(8):1831-41 [PMID: 22921730]
  15. Front Immunol. 2022 Sep 21;13:1024559 [PMID: 36211437]
  16. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10230-5 [PMID: 19502421]
  17. J Wildl Dis. 2019 Jul;55(3):597-607 [PMID: 30702952]
  18. Am J Trop Med Hyg. 1959 Nov;8:689-97 [PMID: 14442651]
  19. J Wildl Dis. 1997 Apr;33(2):323-7 [PMID: 9131568]
  20. Sci Rep. 2022 Oct 11;12(1):17039 [PMID: 36220841]
  21. J Med Entomol. 2020 Sep 7;57(5):1550-1559 [PMID: 32300805]
  22. J Wildl Dis. 2007 Apr;43(2):206-13 [PMID: 17495304]
  23. Parasit Vectors. 2010 Apr 08;3(1):35 [PMID: 20377873]
  24. Parasit Vectors. 2016 Sep 15;9(1):503 [PMID: 27629021]
  25. Insects. 2021 Sep 24;12(10): [PMID: 34680634]
  26. Pathogens. 2022 Sep 03;11(9): [PMID: 36145439]
  27. Emerg Infect Dis. 2004 Dec;10(12):2067-72 [PMID: 15663840]
  28. PLoS Negl Trop Dis. 2022 Apr 13;16(4):e0010329 [PMID: 35417476]
  29. PLoS One. 2012;7(11):e49472 [PMID: 23166680]
  30. Nature. 2007 Jun 7;447(7145):710-3 [PMID: 17507930]
  31. J Med Entomol. 2010 Mar;47(2):238-48 [PMID: 20380306]
  32. Nature. 1964 Dec 19;204:1173-5 [PMID: 14268587]
  33. J Econ Entomol. 2018 Feb 9;111(1):33-38 [PMID: 29272406]
  34. Acta Trop. 2019 Feb;190:288-292 [PMID: 30521803]
  35. Int J Environ Res Public Health. 2011 May;8(5):1402-19 [PMID: 21655127]
  36. J Med Entomol. 1994 Mar;31(2):287-90 [PMID: 8189419]
  37. Malar J. 2012 Jan 23;11:24 [PMID: 22269002]
  38. J Med Entomol. 1974 Mar 28;11(1):95-104 [PMID: 4828351]
  39. J Med Entomol. 2021 Mar 12;58(2):717-729 [PMID: 33225354]
  40. Insects. 2021 Jul 31;12(8): [PMID: 34442258]
  41. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 [PMID: 271968]
  42. Vector Borne Zoonotic Dis. 2006 Summer;6(2):117-27 [PMID: 16796509]
  43. Avian Dis. 2005 Jun;49(2):252-9 [PMID: 16094831]
  44. J Med Entomol. 2020 Sep 7;57(5):1640-1647 [PMID: 32447400]
  45. Am J Trop Med Hyg. 1975 Mar;24(2):188-92 [PMID: 1091168]
  46. Adv Virus Res. 2014;89:201-75 [PMID: 24751197]

Grants

  1. 27472/Florida Department of Agriculture and Consumer Services

MeSH Term

Animals
Humans
Female
Ecosystem
Vertebrates
Animals, Wild
Meals

Word Cloud

Created with Highcharts 10.0.0mosquitoadulticidenon-targetapplicationsareasabundancemosquitoesreferencespeciesreductioncompositioneffectsimpactsorganismswildlifebeneficialinterventionblood-engorgedbloodcontrolAlthoughapplicationpillarintegratedmanagementnuisancevectorwithinecosystemssubstantialconcernHowevernecessarilydetrimentalcasesmayprovidebenefitscertainhypothesizedvertebratereducedbitingpressuretestcollectedultra-lowvolumePermanone-treateduntreatedassesseddiversityfemaleperformedDNAbarcodinganalysismealsidentifyhostresultsdemonstratedsignificant589%takingaccountConsequentlydeclineled645%femalesalsofoundtemporaldynamicdrivenactionsdifferentbecamedominanttreatedsitesremainedsimilarperiodpresentstudysuggeststreatmentshumansextendvertebratesrepresentsunstudiedrarelyrecognizedimpactChangesmealassociated

Similar Articles

Cited By