A meteorological-based forecasting model for predicting minimal infection rates in complex using Québec's West Nile virus integrated surveillance system.

Julie Ducrocq, Karl Forest-Bérard, Najwa Ouhoummane, Elhadji Laouan Sidi, Antoinette Ludwig, Alejandra Irace-Cima
Author Information
  1. Julie Ducrocq: Institut national de santé publique du Québec, Montréal, QC.
  2. Karl Forest-Bérard: Institut national de santé publique du Québec, Montréal, QC.
  3. Najwa Ouhoummane: Institut national de santé publique du Québec, Montréal, QC.
  4. Elhadji Laouan Sidi: Institut national de santé publique du Québec, Montréal, QC.
  5. Antoinette Ludwig: Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC.
  6. Alejandra Irace-Cima: Institut national de santé publique du Québec, Montréal, QC.

Abstract

Background: The (Québec's health authority) has expressed an interest in the development of an early warning tool to identify seasonal human outbreaks of West Nile virus infection in order to modulate public health interventions. The objective of this study was to determine if a user-friendly meteorological-based forecasting tool could be used to predict minimal infection rates for the complex-a proxy of human risk-ahead of mosquito season.
Methods: Annual minimal infection rate (number of positive pools/number of mosquitoes) was calculated for 856 mosquito traps set from 2003 to 2006 and 2013 to 2018 throughout the south of Québec's. Coefficient of determination (R) were estimated using the validation dataset (one third of the database by random selection) with generalized estimation equations, which were prior fitted backwards with polynomial terms using the training dataset (two thirds of the database), in order to minimize the Bayesian information criteria. Mean temperatures and precipitation were grouped at five temporal scales (by month, by season and by 4, 6 and 10-months groupings).
Results: Mean temperatures and cumulative precipitation from the previous months of March (R=0.37), May (R=0.36), December (R=0.35) and the autumn season (R=0.38) accounted for ~40% of annual minimal infection rates variations. Including the "year of sampling" variable in all regression models increased the predictive abilities (R between 0.42 and 0.57).
Conclusion: All regression models explored have too weak predictive abilities to be useful as a public health tool. Other factors implicated in the epidemiology of the West Nile virus need to be incorporated in a meteorological-based early warning model for it to be useful to the provincial health authorities.

Keywords

References

  1. Am J Epidemiol. 2008 Mar 1;167(5):523-9; discussion 530-1 [PMID: 18227100]
  2. Parasit Vectors. 2019 Aug 8;12(1):395 [PMID: 31395085]
  3. PLoS Negl Trop Dis. 2021 Sep 16;15(9):e0009686 [PMID: 34529649]
  4. J Med Entomol. 2008 Jan;45(1):1-8 [PMID: 18283935]
  5. Epidemiology. 2009 Jul;20(4):488-95 [PMID: 19525685]
  6. PLoS Negl Trop Dis. 2014 Mar 27;8(3):e2768 [PMID: 24676212]
  7. MMWR Surveill Summ. 2021 Mar 05;70(1):1-15 [PMID: 33661868]
  8. Geohealth. 2018 Dec 27;2(12):395-409 [PMID: 32159009]
  9. Int J Environ Res Public Health. 2009 Oct;6(10):2639-54 [PMID: 20054460]
  10. Philos Trans R Soc Lond B Biol Sci. 2015 Apr 5;370(1665): [PMID: 25688020]
  11. Biomed Res Int. 2014;2014:658056 [PMID: 24696862]
  12. Lancet. 2001 Jul 28;358(9278):261-4 [PMID: 11498211]
  13. Am J Trop Med Hyg. 2021 Jan;104(1):151-165 [PMID: 33146116]
  14. Stat Methods Med Res. 2013 Dec;22(6):661-70 [PMID: 22072596]
  15. Clin Microbiol Infect. 2013 Aug;19(8):699-704 [PMID: 23594175]
  16. J Med Entomol. 2019 Oct 28;56(6):1508-1515 [PMID: 31549727]
  17. Epidemiology. 2004 Sep;15(5):615-25 [PMID: 15308962]
  18. PLoS Negl Trop Dis. 2021 Jan 7;15(1):e0009022 [PMID: 33411739]
  19. Int J Health Geogr. 2005 Sep 13;4:21 [PMID: 16159403]
  20. Int J Epidemiol. 2016 Dec 1;45(6):1887-1894 [PMID: 28089956]
  21. Sci Total Environ. 2019 Jul 20;675:260-272 [PMID: 31030133]

Word Cloud

Created with Highcharts 10.0.0infectionhealthtoolWestNilevirusminimalR=0Québec'smeteorological-basedforecastingratesseasonusingearlywarninghumanoutbreaksorderpublicmosquitoRdatasetdatabaseMeantemperaturesprecipitationregressionmodelspredictiveabilities0usefulepidemiologymodelBackground:authorityexpressedinterestdevelopmentidentifyseasonalmodulateinterventionsobjectivestudydetermineuser-friendlyusedpredictcomplex-aproxyrisk-aheadMethods:Annualratenumberpositivepools/numbermosquitoescalculated856trapsset2003200620132018throughoutsouthCoefficientdeterminationestimatedvalidationonethirdrandomselectiongeneralizedestimationequationspriorfittedbackwardspolynomialtermstrainingtwothirdsminimizeBayesianinformationcriteriagroupedfivetemporalscalesmonth4610-monthsgroupingsResults:cumulativepreviousmonthsMarch37May36December35autumn38accounted~40%annualvariationsIncluding"yearsampling"variableincreased4257Conclusion:exploredweakfactorsimplicatedneedincorporatedprovincialauthoritiespredictingcomplexintegratedsurveillancesystemQuébec

Similar Articles

Cited By

No available data.