Optimizing Platelet and Leucocyte-Rich Plasma as Biomaterials for Ophthalmic Applications: Impact of Centrifugation Speed.

Alberto Castillo-Macías, Judith Zavala, Wendy Ortega-Lara, Silvia Margarita García-Herrera, Jorge E Valdez-García
Author Information
  1. Alberto Castillo-Macías: Instituto Tecnológcio y de Estudios Superiores de Monterrey, ITESM, Monterrey, Nuevo León, México.
  2. Judith Zavala: Instituto Tecnológcio y de Estudios Superiores de Monterrey, ITESM, Monterrey, Nuevo León, México.
  3. Wendy Ortega-Lara: Instituto Tecnológcio y de Estudios Superiores de Monterrey, ITESM, Monterrey, Nuevo León, México. ORCID
  4. Silvia Margarita García-Herrera: Medicina Diagnóstica, Monterrey, Nuevo León, México.
  5. Jorge E Valdez-García: Instituto Tecnológcio y de Estudios Superiores de Monterrey, ITESM, Monterrey, Nuevo León, México. ORCID

Abstract

Purpose: To assess the impact of varying centrifugation speeds on platelet and leucocyte-rich plasma (L-PRP) in liquid and gel form cellularity and growth factor concentrations for potential use against ocular surface disorders.
Patients and Methods: L-PRP was collected from 16 healthy subjects using three different centrifugation speeds: 580, 1000, and 2000 g, each for 8 min at 25°C. Platelet and leukocyte counts were automatically evaluated. The concentrations of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and transforming growth factor beta 1 (TGF-B1) were measured using enzyme-linked immunosorbent assays. L-PRP gel cellularity was assessed through hematoxylin-eosin and Masson's trichrome staining, categorized as moderate or abundant, and statistically analyzed. L-PRP gel membrane's chemical composition was analyzed using Fourier-transform infrared spectroscopy (FTIR), crystallization was investigated with X-ray diffraction (XRD), and ultrastructure was assessed using surface electron microscopy (SEM). Additionally, membrane degradation was evaluated over a 7-day period.
Results: No significant differences in cellularity and growth factor concentrations among centrifugation speeds (p > 0.05) were found. Moderate cellularity predominated at 580 g and 2000 g, while abundant cellularity was observed at 1000 g. No significant differences were found techniques (p = 0.16). Masson's trichrome staining suggested the existence of abundant fibrin at 1000 g but without significant differences (p = 0.07). FTIR analysis exhibited the characteristic fibrin bands at all speeds, and XRD indicated a keratin-like pattern. SEM revealed greater porosity at 580 g and fibrin membrane degradation was lower at this speed (p = 0.0001).
Conclusion: Centrifugation speed did not significantly affect growth factor concentration or cellularity in both liquid and gel L-PRP. Further studies should explore the impact of different separation techniques for L-PRP used in ophthalmic applications.

Keywords

References

  1. Int J Mol Sci. 2020 Sep 06;21(18): [PMID: 32900003]
  2. Stem Cell Res Ther. 2013 Jun 07;4(3):67 [PMID: 23759113]
  3. Curr Opin Ophthalmol. 2015 Jul;26(4):325-32 [PMID: 26058033]
  4. Curr Pharm Biotechnol. 2012 Jun;13(7):1145-52 [PMID: 21740377]
  5. J Biomed Mater Res A. 2003 Jun 15;65(4):435-40 [PMID: 12761832]
  6. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998 Jun;85(6):638-46 [PMID: 9638695]
  7. Thromb Haemost. 2011 May;105 Suppl 1:S13-33 [PMID: 21479340]
  8. Nature. 2008 Jul 24;454(7203):428-35 [PMID: 18650913]
  9. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Mar;101(3):e45-50 [PMID: 16504850]
  10. Am J Sports Med. 2009 Nov;37(11):2259-72 [PMID: 19875361]
  11. Platelets. 2016;27(1):66-74 [PMID: 25901600]
  12. Ophthalmology. 2007 Jul;114(7):1286-1293.e1 [PMID: 17324465]
  13. J Cutan Aesthet Surg. 2014 Oct-Dec;7(4):189-97 [PMID: 25722595]
  14. Genes Dev. 2008 May 15;22(10):1276-312 [PMID: 18483217]
  15. Phys Med Rehabil Clin N Am. 2016 Nov;27(4):825-853 [PMID: 27788903]
  16. Biopolymers. 1997 Apr 15;41(5):545-53 [PMID: 9095677]
  17. Am J Sports Med. 2023 Jul;51(8):2133-2140 [PMID: 37199381]
  18. J Stomatol Oral Maxillofac Surg. 2020 Apr;121(2):150-154 [PMID: 31299341]
  19. Regen Med. 2022 Dec;17(12):887-890 [PMID: 36169230]
  20. J Bone Joint Surg Am. 2012 Feb 15;94(4):308-16 [PMID: 22336969]
  21. Reg Anesth Pain Med. 2019 Apr 16;: [PMID: 30992411]
  22. Clin Oral Investig. 2017 Jul;21(6):1913-1927 [PMID: 28551729]
  23. Transfus Apher Sci. 2020 Feb;59(1):102716 [PMID: 31928859]
  24. Transfus Apher Sci. 2016 Feb;54(1):103-10 [PMID: 26883885]
  25. J Orthop Sci. 2016 Sep;21(5):683-9 [PMID: 27503185]
  26. Int J Implant Dent. 2017 Dec;3(1):17 [PMID: 28466249]
  27. Clin Ophthalmol. 2022 Dec 15;16:4207-4213 [PMID: 36544899]
  28. Tissue Eng Part B Rev. 2008 Sep;14(3):249-58 [PMID: 18601587]
  29. Trends Biotechnol. 2006 May;24(5):227-34 [PMID: 16540193]
  30. Transfusion. 1990 Sep;30(7):634-8 [PMID: 2144922]
  31. Curr Pharm Biotechnol. 2012 Jun;13(7):1257-65 [PMID: 21740369]
  32. ISRN Hematol. 2014 Mar 25;2014:176060 [PMID: 25006472]
  33. J Vis Exp. 2022 Aug 2;(186): [PMID: 35993713]

Word Cloud

Created with Highcharts 10.0.0growthL-PRPcellularityfactorgcentrifugationgelusingp0speedsconcentrations5801000abundantsignificantdifferences=fibrinimpactplateletliquidsurface16different2000PlateletevaluatedassessedMasson'strichromestaininganalyzedFTIRXRDSEMmembranedegradationfoundtechniquesspeedCentrifugationPurpose:assessvaryingleucocyte-richplasmaformpotentialuseoculardisordersPatientsMethods:collectedhealthysubjectsthreespeeds:8min25°CleukocytecountsautomaticallyvascularendothelialVEGFplatelet-derivedPDGFtransformingbeta1TGF-B1measuredenzyme-linkedimmunosorbentassayshematoxylin-eosincategorizedmoderatestatisticallymembrane'schemicalcompositionFourier-transforminfraredspectroscopycrystallizationinvestigatedX-raydiffractionultrastructureelectronmicroscopyAdditionally7-dayperiodResults:among>05Moderatepredominatedobservedsuggestedexistencewithout07analysisexhibitedcharacteristicbandsindicatedkeratin-likepatternrevealedgreaterporositylower0001Conclusion:significantlyaffectconcentrationstudiesexploreseparationusedophthalmicapplicationsOptimizingLeucocyte-RichPlasmaBiomaterialsOphthalmicApplications:ImpactSpeedfactorsleucocytes

Similar Articles

Cited By