Soft Materials for Photoelectrochemical Fuel Production.

Erin L Ratcliff, Zhiting Chen, Casey M Davis, Eui Hyun Suh, Michael F Toney, Neal R Armstrong, Obadiah G Reid, Ann L Greenaway
Author Information
  1. Erin L Ratcliff: Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States. ORCID
  2. Zhiting Chen: Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States.
  3. Casey M Davis: Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.
  4. Eui Hyun Suh: Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States.
  5. Michael F Toney: Materials Science and Engineering Program, Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States. ORCID
  6. Neal R Armstrong: Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States. ORCID
  7. Obadiah G Reid: Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States. ORCID
  8. Ann L Greenaway: Materials, Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States. ORCID

Abstract

Polymer semiconductors are fascinating materials that could enable delivery of chemical fuels from water and sunlight, offering several potential advantages over their inorganic counterparts. These include extensive synthetic tunability of optoelectronic and redox properties and unique opportunities to tailor catalytic sites via chemical control over the nanoenvironment. Added to this is proven functionality of polymer semiconductors in solar cells, low-cost processability, and potential for large-area scalability. Herein we discuss recent progress on soft photoelectrochemical systems and define three critical knowledge gaps that must be closed for these materials to reach their full potential. We must (1) understand the influence of electrolyte penetration on photoinduced charge separation, transport, and recombination, (2) learn to exploit the swollen polymer/electrolyte interphase to drive selective fuel formation, and (3) establish co-design criteria for soft materials that sustain function in the face of harsh chemical challenges. Achieving these formidable goals would enable tailorable systems for driving photoelectrochemical fuel production at scale.

References

  1. J Am Chem Soc. 2020 Sep 23;142(38):16099-16116 [PMID: 32818372]
  2. J Am Chem Soc. 2022 Aug 3;144(30):13673-13687 [PMID: 35857885]
  3. Science. 1998 Apr 17;280(5362):425-7 [PMID: 9545218]
  4. ChemSusChem. 2016 Nov 9;9(21):3062-3066 [PMID: 27730752]
  5. ACS Appl Mater Interfaces. 2021 Aug 4;13(30):36595-36604 [PMID: 34310106]
  6. Nature. 1972 Jul 7;238(5358):37-8 [PMID: 12635268]
  7. ACS Appl Mater Interfaces. 2017 Mar 29;9(12):10355-10359 [PMID: 28287695]
  8. J Phys Chem Lett. 2011 Jun 2;2(11):1337-50 [PMID: 26295432]
  9. Chem Rev. 2022 Jul 13;122(13):11778-11829 [PMID: 35699661]
  10. Acc Chem Res. 2009 Dec 21;42(12):1890-8 [PMID: 19902921]
  11. Proc Natl Acad Sci U S A. 2021 Sep 14;118(37): [PMID: 34508002]
  12. J Am Chem Soc. 2020 Apr 29;142(17):7795-7802 [PMID: 32270679]
  13. Joule. 2020 Nov 18;4(11):2237-2240 [PMID: 32954216]
  14. Nat Commun. 2021 Oct 20;12(1):6096 [PMID: 34671014]
  15. J Am Chem Soc. 2019 Jun 5;141(22):9063-9071 [PMID: 31074272]
  16. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20008-13 [PMID: 24277806]
  17. Front Bioeng Biotechnol. 2018 Aug 23;6:114 [PMID: 30211158]
  18. Nat Mater. 2013 Nov;12(11):1038-44 [PMID: 23913173]
  19. ChemSusChem. 2023 May 5;16(9):e202202186 [PMID: 36789473]
  20. Chem Sci. 2020 Aug 6;11(47):12737-12745 [PMID: 34094469]
  21. Angew Chem Int Ed Engl. 2023 Jan 23;62(4):e202215213 [PMID: 36445830]
  22. Sensors (Basel). 2020 Apr 16;20(8): [PMID: 32316211]
  23. Nano Lett. 2019 Apr 10;19(4):2189-2197 [PMID: 30888185]
  24. J Am Chem Soc. 2022 Oct 26;144(42):19382-19395 [PMID: 36251010]
  25. ACS Macro Lett. 2015 Apr 21;4(4):453-457 [PMID: 35596312]
  26. Nat Commun. 2018 Nov 23;9(1):4968 [PMID: 30470759]
  27. Science. 2018 Sep 14;361(6407):1094-1098 [PMID: 30093603]
  28. J Am Chem Soc. 2021 Sep 15;143(36):14795-14805 [PMID: 34469688]
  29. J Am Chem Soc. 2017 May 31;139(21):7148-7151 [PMID: 28513158]
  30. Nature. 2022 Jan;601(7891):63-68 [PMID: 34732875]
  31. Adv Mater. 2023 Mar 27;:e2210481 [PMID: 36972554]
  32. ACS Omega. 2017 Mar 17;2(3):1009-1018 [PMID: 31457482]
  33. Angew Chem Int Ed Engl. 2022 May 16;61(21):e202200329 [PMID: 35263008]
  34. Adv Mater. 2013 Dec 3;25(45):6589-93 [PMID: 23970421]
  35. J Am Chem Soc. 2021 Aug 18;143(32):12499-12508 [PMID: 34343431]
  36. Chem Rev. 2022 Feb 23;122(4):4493-4551 [PMID: 35026108]
  37. J Am Chem Soc. 2022 Nov 9;144(44):20514-20524 [PMID: 36314899]
  38. Nat Mater. 2020 May;19(5):559-565 [PMID: 32015530]
  39. Annu Rev Phys Chem. 2019 Jun 14;70:99-121 [PMID: 31174457]
  40. Nat Commun. 2016 Oct 31;7:13237 [PMID: 27796309]
  41. Chem Commun (Camb). 2020 Jun 23;56(50):6790-6793 [PMID: 32428055]
  42. ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8191-8198 [PMID: 35129962]
  43. J Am Chem Soc. 2020 Mar 4;142(9):4508-4516 [PMID: 32043354]
  44. Adv Sci (Weinh). 2021 Jan 20;8(5):2003077 [PMID: 33717849]
  45. Dalton Trans. 2009 Nov 21;(43):9374-84 [PMID: 19859588]
  46. Sci Adv. 2019 Sep 27;5(9):eaav4620 [PMID: 31598549]
  47. Adv Mater. 2012 Jan 3;24(1):34-51 [PMID: 22102447]
  48. Nat Commun. 2017 Oct 19;8(1):1048 [PMID: 29051498]

Word Cloud

Created with Highcharts 10.0.0materialschemicalpotentialsemiconductorsenablesoftphotoelectrochemicalsystemsmustfuelPolymerfascinatingdeliveryfuelswatersunlightofferingseveraladvantagesinorganiccounterpartsincludeextensivesynthetictunabilityoptoelectronicredoxpropertiesuniqueopportunitiestailorcatalyticsitesviacontrolnanoenvironmentAddedprovenfunctionalitypolymersolarcellslow-costprocessabilitylarge-areascalabilityHereindiscussrecentprogressdefinethreecriticalknowledgegapsclosedreachfull1understandinfluenceelectrolytepenetrationphotoinducedchargeseparationtransportrecombination2learnexploitswollenpolymer/electrolyteinterphasedriveselectiveformation3establishco-designcriteriasustainfunctionfaceharshchallengesAchievingformidablegoalstailorabledrivingproductionscaleSoftMaterialsPhotoelectrochemicalFuelProduction

Similar Articles

Cited By