Enhanced photocatalytic degradation of methylene blue dye using eco-friendly synthesized rGO@ZnO nanocomposites.

Asfaw Negash, Said Mohammed, Hulugirgesh Degefu Weldekirstos, Abera D Ambaye, Minbale Gashu
Author Information
  1. Asfaw Negash: Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia. asfawnegash@dbu.edu.et.
  2. Said Mohammed: Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia.
  3. Hulugirgesh Degefu Weldekirstos: Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia.
  4. Abera D Ambaye: Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa.
  5. Minbale Gashu: Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia. minbalegashu@dbu.edu.et.

Abstract

Industrial chemical pollutants such as methylene blue (MB) dye are released into the water body and potentially cause harm to the human and aquatic biosphere. Therefore, this study aims to synthesize eco-friendly nanocatalysts, i.e., reduced graphene oxide (rGO), zinc oxide (ZnO), and reduced graphene oxide-zinc oxide (rGO@ZnO) nanocomposites, for efficient photocatalytic degradation of MB dye. A graphite rod was obtained from waste dry cell batteries for the electrochemical exfoliation synthesis of graphene oxide (GO) and rGO. For the eco-friendly synthesis of ZnO and rGO@ZnO nanocatalysts, Croton macrostachyus leaf extract was used as a reducing and capping agent. The synthesized nanocatalysts were characterized using a UV-Vis spectrophotometer, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy with energy-dispersive X-ray. The eco-friendly synthesized rGO, ZnO, and rGO@ZnO nanocatalysts were applied for the photocatalytic degradation of MB dye using direct sunlight irradiation. At optimum parameters, photocatalytic degradation of MB dye efficiency reached up to 66%, 96.5%, and 99.0%, respectively. Furthermore, kinetics of the photodegradation reaction based on rGO, ZnO, and rGO@ZnO nanocatalysts follow pseudo-first-order with a rate constant of 2.16 × 10 min, 4.97 × 10 min, and 5.03 × 10 min, respectively. Lastly, this study promotes a low catalyst load (20 mg) for the efficient photodegradation of MB dye.

References

  1. Raza, A., Altaf, S., Ali, S., Ikram, M. & Li, G. Recent advances in carbonaceous sustainable nanomaterials for wastewater treatments. Sustain. Mater. Technol. 32, e00406. https://doi.org/10.1016/j.susmat.2022.e00406 (2022). [DOI: 10.1016/j.susmat.2022.e00406]
  2. Ikram, M. et al. Cellulose grafted poly acrylic acid doped manganese oxide nanorods as novel platform for catalytic, antibacterial activity and molecular docking analysis. Surf. Interfaces 37, 102710. https://doi.org/10.1016/j.surfin.2023.102710 (2023). [DOI: 10.1016/j.surfin.2023.102710]
  3. Naidu, R. et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616. https://doi.org/10.1016/j.envint.2021.106616 (2021). [DOI: 10.1016/j.envint.2021.106616]
  4. Pham, T. T. et al. Industrial water mass balance as a tool for water management in industrial parks. Water Resour. Ind. 13, 14–21. https://doi.org/10.1016/j.wri.2016.04.001 (2016). [DOI: 10.1016/j.wri.2016.04.001]
  5. Preisner, M. Surface water pollution by untreated municipal wastewater discharge due to a sewer failure. Environ. Processes 7, 767–780. https://doi.org/10.1007/s40710-020-00452-5 (2020). [DOI: 10.1007/s40710-020-00452-5]
  6. Hammond, P., Suttie, M., Lewis, V. T., Smith, A. P. & Singer, A. C. Detection of untreated sewage discharges to watercourses using machine learning. npj Clean Water 4, 18. https://doi.org/10.1038/s41545-021-00108-3 (2021). [DOI: 10.1038/s41545-021-00108-3]
  7. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3, 275–290. https://doi.org/10.1016/j.biori.2019.09.001 (2019). [DOI: 10.1016/j.biori.2019.09.001]
  8. Elbasiouny, H. et al. Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: A review. Environ. Monit. Assess. 193, 449. https://doi.org/10.1007/s10661-021-09236-2 (2021). [DOI: 10.1007/s10661-021-09236-2]
  9. Moeen, S. et al. Comparative study of sonophotocatalytic, photocatalytic, and catalytic activities of magnesium and chitosan-doped tin oxide quantum dots. ACS Omega 7, 46428–46439. https://doi.org/10.1021/acsomega.2c05133 (2022). [DOI: 10.1021/acsomega.2c05133]
  10. Shahzadi, A. et al. La-doped CeO quantum dots: Novel dye degrader, antibacterial activity, and in silico molecular docking analysis. ACS Omega 8, 8605–8616. https://doi.org/10.1021/acsomega.2c07753 (2023). [DOI: 10.1021/acsomega.2c07753]
  11. Ghuge, S. P. & Saroha, A. K. Catalytic ozonation of dye industry effluent using mesoporous bimetallic Ru-Cu/SBA-15 catalyst. Process Saf. Environ. Prot. 118, 125–132. https://doi.org/10.1016/j.psep.2018.06.033 (2018). [DOI: 10.1016/j.psep.2018.06.033]
  12. Huang, R. et al. Ion-exchange resins for efficient removal of colorants in bis(hydroxyethyl) terephthalate. ACS Omega 6, 12351–12360. https://doi.org/10.1021/acsomega.1c01477 (2021). [DOI: 10.1021/acsomega.1c01477]
  13. Agarwala, R. & Mulky, L. Adsorption of dyes from wastewater: A comprehensive review. ChemBioEng Rev. https://doi.org/10.1002/cben.202200011 (2023). [DOI: 10.1002/cben.202200011]
  14. Santhosh, C., Malathi, A., Daneshvar, E., Kollu, P. & Bhatnagar, A. Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Sci. Rep. 8, 15531. https://doi.org/10.1038/s41598-018-33818-9 (2018). [DOI: 10.1038/s41598-018-33818-9]
  15. Ahmed, M. et al. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. npj Clean Water 5, 12. https://doi.org/10.1038/s41545-022-00154-5 (2022). [DOI: 10.1038/s41545-022-00154-5]
  16. Sun, Y. & O’Connell, D. W. Application of visible light active photocatalysis for water contaminants: A review. Water Environ. Res. 94, e10781. https://doi.org/10.1002/wer.10781 (2022). [DOI: 10.1002/wer.10781]
  17. Jamal, F. et al. Review of metal sulfide nanostructures and their applications. ACS Appl. Nano Mater. 6, 7077–7106. https://doi.org/10.1021/acsanm.3c00417 (2023). [DOI: 10.1021/acsanm.3c00417]
  18. Chang, X., Li, S. & Chu, D. Sensing of oxygen partial pressure in air with ZnO nanoparticles. Sensors https://doi.org/10.3390/s20020562 (2020). [DOI: 10.3390/s20020562]
  19. Tomar, R., Abdala, A. A., Chaudhary, R. G. & Singh, N. B. Photocatalytic degradation of dyes by nanomaterials. Mater. Today Proc. 29, 967–973. https://doi.org/10.1016/j.matpr.2020.04.144 (2020). [DOI: 10.1016/j.matpr.2020.04.144]
  20. Jamkhande, P. G., Ghule, N. W., Bamer, A. H. & Kalaskar, M. G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174 (2019). [DOI: 10.1016/j.jddst.2019.101174]
  21. Balcha, A., Yadav, O. P. & Dey, T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. Int. 23, 25485–25493. https://doi.org/10.1007/s11356-016-7750-6 (2016). [DOI: 10.1007/s11356-016-7750-6]
  22. Phuruangrat, A., Kuntalue, B., Thongtem, S. & Thongtem, T. Hydrothermal synthesis of hexagonal ZnO nanoplates used for photodegradation of methylene blue. Optik 226, 165949. https://doi.org/10.1016/j.ijleo.2020.165949 (2021). [DOI: 10.1016/j.ijleo.2020.165949]
  23. Wu, Q., Miao, W.-S., Zhang, Y.-D., Gao, H.-J. & Hui, D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 9, 259–273. https://doi.org/10.1515/ntrev-2020-0021 (2020). [DOI: 10.1515/ntrev-2020-0021]
  24. Soto-Robles, C. A. et al. Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue. J. Mol. Struct. 1225, 129101. https://doi.org/10.1016/j.molstruc.2020.129101 (2021). [DOI: 10.1016/j.molstruc.2020.129101]
  25. Ikram, M. et al. Assessment of catalytic, antimicrobial and molecular docking analysis of starch-grafted polyacrylic acid doped BaO nanostructures. Int. J. Biol. Macromol. 230, 123190. https://doi.org/10.1016/j.ijbiomac.2023.123190 (2023). [DOI: 10.1016/j.ijbiomac.2023.123190]
  26. Ikram, M. et al. Synthesis of Al/starch co-doped in CaO nanoparticles for enhanced catalytic and antimicrobial activities: Experimental and DFT approaches. RSC Adv. 12, 32142–32155. https://doi.org/10.1039/D2RA06340A (2022). [DOI: 10.1039/D2RA06340A]
  27. Olak-Kucharczyk, M., Szczepańska, G., Kudzin, M. H. & Pisarek, M. The photocatalytical properties of RGO/TiO coated fabrics. Coatings 10, 1041 (2020). [DOI: 10.3390/coatings10111041]
  28. Yu, H., Zhang, B., Bulin, C., Li, R. & Xing, R. High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143. https://doi.org/10.1038/srep36143 (2016). [DOI: 10.1038/srep36143]
  29. Chen, X., Lai, D., Yuan, B. & Fu, M.-L. Fabrication of superelastic and highly conductive graphene aerogels by precisely “unlocking” the oxygenated groups on graphene oxide sheets. Carbon 162, 552–561. https://doi.org/10.1016/j.carbon.2020.02.082 (2020). [DOI: 10.1016/j.carbon.2020.02.082]
  30. Zhao, Y., Liu, L., Cui, T., Tong, G. & Wu, W. Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition. Appl. Surf. Sci. 412, 58–68. https://doi.org/10.1016/j.apsusc.2017.03.207 (2017). [DOI: 10.1016/j.apsusc.2017.03.207]
  31. Qin, J. et al. ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl. Surf. Sci. 392, 196–203. https://doi.org/10.1016/j.apsusc.2016.09.043 (2017). [DOI: 10.1016/j.apsusc.2016.09.043]
  32. Bantie, L., Assefa, S., Teklehaimanot, T. & Engidawork, E. In vivo antimalarial activity of the crude leaf extract and solvent fractions of Croton macrostachyus Hocsht (Euphorbiaceae) against Plasmodium berghei in mice. BMC Complement. Altern. Med. 14, 79. https://doi.org/10.1186/1472-6882-14-79 (2014). [DOI: 10.1186/1472-6882-14-79]
  33. Terefe, E. M. et al. In vitro anti-HIV and cytotoxic effects of pure compounds isolated from Croton macrostachyus Hochst Ex Delile. BMC Complement. Med. Ther. 22, 159. https://doi.org/10.1186/s12906-022-03638-6 (2022). [DOI: 10.1186/s12906-022-03638-6]
  34. Vasantharaj, S. et al. Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J. Environ. Chem. Eng. 9, 105772. https://doi.org/10.1016/j.jece.2021.105772 (2021). [DOI: 10.1016/j.jece.2021.105772]
  35. Siripireddy, B. & Mandal, B. K. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv. Powder Technol. 28, 785–797. https://doi.org/10.1016/j.apt.2016.11.026 (2017). [DOI: 10.1016/j.apt.2016.11.026]
  36. Brindhadevi, K. et al. Zinc oxide nanoparticles (ZnONPs) -induced antioxidants and photocatalytic degradation activity from hybrid grape pulp extract (HGPE). Biocatal. Agric. Biotechnol. 28, 101730. https://doi.org/10.1016/j.bcab.2020.101730 (2020). [DOI: 10.1016/j.bcab.2020.101730]
  37. Negash, A., Demeku, A. M. & Molloro, L. H. Application of reduced graphene oxide as the hole transport layer in organic solar cells synthesized from waste dry cells using the electrochemical exfoliation method. New J. Chem. 46, 13001–13009. https://doi.org/10.1039/D2NJ01974D (2022). [DOI: 10.1039/D2NJ01974D]
  38. Mandal, S. K. et al. Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes. Mater. Chem. Phys. 223, 456–465. https://doi.org/10.1016/j.matchemphys.2018.11.002 (2019). [DOI: 10.1016/j.matchemphys.2018.11.002]
  39. Ebrahimi Naghani, M., Neghabi, M., Zadsar, M. & Abbastabar Ahangar, H. Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite. Sci. Rep. 13, 1496. https://doi.org/10.1038/s41598-023-28307-7 (2023). [DOI: 10.1038/s41598-023-28307-7]
  40. Fujii, S. & Enoki, T. Rearrangement of π-electron network and switching of edge-localized π state in reduced graphene oxide. ACS Nano 7, 11190–11199. https://doi.org/10.1021/nn404937z (2013). [DOI: 10.1021/nn404937z]
  41. Alharthi, F. A. et al. Synthesis and characterization of rGO@ZnO nanocomposites for esterification of acetic acid. ACS Omega 7, 2786–2797. https://doi.org/10.1021/acsomega.1c05565 (2022). [DOI: 10.1021/acsomega.1c05565]
  42. Al-Rawashdeh, N. A. F., Allabadi, O. & Aljarrah, M. T. Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega 5, 28046–28055. https://doi.org/10.1021/acsomega.0c03608 (2020). [DOI: 10.1021/acsomega.0c03608]
  43. Malik, A. R. et al. Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. J. Saudi Chem. Soc. 26, 101438. https://doi.org/10.1016/j.jscs.2022.101438 (2022). [DOI: 10.1016/j.jscs.2022.101438]
  44. Shanmugasundaram, A. et al. Facile in-situ formation of rGO/ZnO nanocomposite: Photocatalytic remediation of organic pollutants under solar illumination. Mater. Chem. Phys. 218, 218–228. https://doi.org/10.1016/j.matchemphys.2018.07.046 (2018). [DOI: 10.1016/j.matchemphys.2018.07.046]
  45. Park, S. et al. Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019–3023. https://doi.org/10.1016/j.carbon.2011.02.071 (2011). [DOI: 10.1016/j.carbon.2011.02.071]
  46. Alves, Z., Nunes, C. & Ferreira, P. Unravelling the role of synthesis conditions on the structure of zinc oxide-reduced graphene oxide nanofillers. Nanomaterials 11, 2149 (2021). [DOI: 10.3390/nano11082149]
  47. Bokuniaeva, A. O. & Vorokh, A. S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO powder. J. Phys. Conf. Ser. 1410, 012057. https://doi.org/10.1088/1742-6596/1410/1/012057 (2019). [DOI: 10.1088/1742-6596/1410/1/012057]
  48. Ramírez-Amador, R. et al. The influence of deposition time on the structural, morphological, optical and electrical properties of ZnO-rGO nanocomposite thin films grown in a single step by USP. Crystals 10, 73 (2020). [DOI: 10.3390/cryst10020073]
  49. Sengunthar, P., Bhavsar, K. H., Balasubramanian, C. & Joshi, U. S. Physical properties and enhanced photocatalytic activity of ZnO-rGO nanocomposites. Appl. Phys. A 126, 567. https://doi.org/10.1007/s00339-020-03753-6 (2020). [DOI: 10.1007/s00339-020-03753-6]
  50. Banumathi, S. et al. Rapid sun-light driven photocatalytic functions of 3D rGO/ZnO/Ag heterostructures via improved charge transfer kinetics. J. Mater. Res. Technol. 10, 1301–1309. https://doi.org/10.1016/j.jmrt.2020.12.062 (2021). [DOI: 10.1016/j.jmrt.2020.12.062]
  51. Prabhu, S. et al. Enhanced photocatalytic activities of ZnO dumbbell/reduced graphene oxide nanocomposites for degradation of organic pollutants via efficient charge separation pathway. Appl. Surf. Sci. 487, 1279–1288. https://doi.org/10.1016/j.apsusc.2019.05.086 (2019). [DOI: 10.1016/j.apsusc.2019.05.086]
  52. Elshypany, R. et al. Magnetic ZnO crystal nanoparticle growth on reduced graphene oxide for enhanced photocatalytic performance under visible light irradiation. Molecules https://doi.org/10.3390/molecules26082269 (2021). [DOI: 10.3390/molecules26082269]
  53. Merlano, A. S., Hoyos, L. M., Gutiérrez, G. J., Valenzuela, M. A. & Salazar, Á. Effect of Zn precursor concentration in the synthesis of rGO/ZnO composites and their photocatalytic activity. New J. Chem. 44, 19858–19867. https://doi.org/10.1039/D0NJ03683H (2020). [DOI: 10.1039/D0NJ03683H]
  54. Bekru, A. G. et al. Green Synthesis of a CuO–ZnO Nanocomposite for Efficient Photodegradation of Methylene Blue and Reduction of 4-Nitrophenol. ACS Omega 7, 30908–30919. https://doi.org/10.1021/acsomega.2c02687 (2022). [DOI: 10.1021/acsomega.2c02687]
  55. Weldekirstos, H. D., Habtewold, B. & Kabtamu, D. M. Surfactant-assisted synthesis of NiO-ZnO and NiO-CuO nanocomposites for enhanced photocatalytic degradation of methylene blue under UV light irradiation. Front. Mater. https://doi.org/10.3389/fmats.2022.832439 (2022). [DOI: 10.3389/fmats.2022.832439]
  56. Bekru, A. G. et al. Microwave-assisted synthesis of rGO-ZnO/CuO nanocomposites for photocatalytic degradation of organic pollutants. Crystals 13 (2023).

Word Cloud

Created with Highcharts 10.0.0dyeMBnanocatalystsrGO@ZnOeco-friendlyoxiderGOZnOphotocatalyticdegradationgraphenesynthesizedusingmethylenebluestudyreducednanocompositesefficientsynthesisX-rayrespectivelyphotodegradationIndustrialchemicalpollutantsreleasedwaterbodypotentiallycauseharmhumanaquaticbiosphereThereforeaimssynthesizeiezincoxide-zincgraphiterodobtainedwastedrycellbatterieselectrochemicalexfoliationGOCrotonmacrostachyusleafextractusedreducingcappingagentcharacterizedUV-VisspectrophotometerFouriertransforminfraredspectroscopydiffractionscanningelectronmicroscopyenergy-dispersiveapplieddirectsunlightirradiationoptimumparametersefficiencyreached66%965%990%Furthermorekineticsreactionbasedfollowpseudo-first-orderrateconstant216 × 10 min497 × 10 min503 × 10 minLastlypromoteslowcatalystload20 mgEnhanced

Similar Articles

Cited By