Identification of a valuable gene network for the diagnosis and treatment of non-obstructive azoospermia: in-silico analyses - experimental research.

Mohammad Reza Zabihi, Narges Norouzkhani, Samad Karkhah, Mohammad Akhoondian
Author Information
  1. Mohammad Reza Zabihi: Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran.
  2. Narges Norouzkhani: Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad.
  3. Samad Karkhah: Department of Medical-Surgical Nursing, School of Nursing and Midwifery.
  4. Mohammad Akhoondian: Department of Physiology, School of Medicine, Cellular and The Molecular Research Center, Guilan University of Medical Science, Rasht, Iran.

Abstract

Introduction: Non-obstructive azoospermia (NOA) is an etiology of infertility in men. NOA may have various classifications; however, hypogonadotropic hypogonadism can be regarded as a class of NOA associated with genetic factors. Former studies have shown that noncoding RNA (ncRNA) plays an essential role in NOA incidence, but few studies have been performed on the NOA-related ncRNA interaction network. In the current study, genes, NOA-related microRNA (miRNA), and circular RNA (circRNA) were found by bioinformatics methods to offer a new perspective on NOA treatment.
Methods: The gonadotropin-releasing hormone receptor (GnRHR)-related protein-protein interaction (PPI) network was extracted by searching in 'string-database'. GO, KEGG, and Enrichr databases were used to identify pathways, molecular function, and biological processing. Four databases, including TargetScan, mirDIP, miRmap, and miRWalk, were used to extract miRNAs. At last, the circ2GO, circBase, and literature were used to identify circRNAs and their genes.
Results: The current study identified the four proteins associated with the GnRHR signaling; eight shared miRNAs that affect the expression of found proteins and 25 circRNAs and their origin genes that regulate the miRNAs' function.
Conclusion: The two miRNAs, hsa-miR-134-3p and hsa-miR-513C-3p, the three genes, VCAN, NFATC3, and PRDM5, and their associated circRNAs can perform as a valuable gene network in the diagnosis and treatment of NOA pathogenesis.

Keywords

References

  1. Front Endocrinol (Lausanne). 2018 Jan 05;8:367 [PMID: 29354094]
  2. Mol Cancer. 2021 Feb 2;20(1):25 [PMID: 33530981]
  3. Oncol Lett. 2021 Aug;22(2):619 [PMID: 34257727]
  4. Front Pharmacol. 2018 Nov 13;9:1295 [PMID: 30483132]
  5. Int J Mol Sci. 2021 Sep 21;22(18): [PMID: 34576335]
  6. Evid Based Complement Alternat Med. 2021 Aug 12;2021:8076598 [PMID: 34422080]
  7. Epigenomics. 2020 Nov;12(22):1957-1968 [PMID: 33242258]
  8. Zygote. 2019 Oct;27(5):263-271 [PMID: 31412971]
  9. Cancer Med. 2017 Jun;6(6):1173-1180 [PMID: 28544609]
  10. Cell Physiol Biochem. 2018;46(6):2576-2586 [PMID: 29758559]
  11. Mol Ther. 2019 Oct 2;27(10):1718-1725 [PMID: 31526596]
  12. Curr Drug Metab. 2019;20(8):665-673 [PMID: 31362668]
  13. N Engl J Med. 1997 Nov 27;337(22):1597-602 [PMID: 9371856]
  14. Endocrinol Diabetes Metab Case Rep. 2020 Mar 05;2020: [PMID: 32134721]
  15. RNA. 2014 Nov;20(11):1666-70 [PMID: 25234927]
  16. PLoS One. 2017 Nov 28;12(11):e0188750 [PMID: 29182666]
  17. Biomed Res Int. 2017;2017:5936171 [PMID: 28717649]
  18. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33839742]
  19. Int J Mol Sci. 2017 Jun 12;18(6): [PMID: 28604625]
  20. Med Sci Monit. 2018 Aug 07;24:5488-5500 [PMID: 30086127]
  21. Int J Fertil Steril. 2014 Jul;8(2):113-8 [PMID: 25083174]
  22. Biosci Rep. 2020 Jul 31;40(7): [PMID: 32614449]
  23. F1000Res. 2019 May 16;8: [PMID: 31143441]
  24. Transl Pediatr. 2021 Jul;10(7):1805-1817 [PMID: 34430428]
  25. Urol J. 2019 Jun 17;16(3):295-299 [PMID: 30251746]
  26. Mol Cell Endocrinol. 2011 Oct 22;346(1-2):21-8 [PMID: 21645587]
  27. World J Surg Oncol. 2022 Feb 14;20(1):34 [PMID: 35164778]
  28. Sci Rep. 2016 Jan 12;6:19069 [PMID: 26753906]
  29. Best Pract Res Clin Endocrinol Metab. 2020 Dec;34(6):101475 [PMID: 33419659]
  30. Biomed Res Int. 2020 Oct 07;2020:4710780 [PMID: 33178826]
  31. J Androl. 2012 Jul-Aug;33(4):578-84 [PMID: 22016347]
  32. Neurol Neuroimmunol Neuroinflamm. 2021 Aug 12;8(5): [PMID: 34385287]
  33. Hum Reprod. 2018 Jun 1;33(6):1087-1098 [PMID: 29635626]
  34. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  35. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20 [PMID: 20576703]
  36. PLoS One. 2018 Oct 18;13(10):e0206239 [PMID: 30335862]
  37. Bioinformatics. 2021 Oct 25;37(20):3684-3685 [PMID: 33961020]
  38. J Pediatr Endocrinol Metab. 2020 Sep 25;33(9):1237-1240 [PMID: 32813678]
  39. Cell. 2009 Jan 23;136(2):215-33 [PMID: 19167326]
  40. Mult Scler. 2020 Apr;26(5):599-604 [PMID: 31965891]
  41. Endocrinology. 2000 Aug;141(8):3012-9 [PMID: 10919290]
  42. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612 [PMID: 33237311]
  43. Nucleic Acids Res. 2018 Jan 4;46(D1):D360-D370 [PMID: 29194489]
  44. Genome Res. 2013 Jan;23(1):34-45 [PMID: 23034410]
  45. World J Gastroenterol. 2019 Nov 7;25(41):6273-6288 [PMID: 31749597]
  46. Cancers (Basel). 2020 Oct 14;12(10): [PMID: 33066523]
  47. Mol Med Rep. 2017 Dec;16(6):9173-9180 [PMID: 28990083]
  48. Am J Transl Res. 2018 Mar 15;10(3):771-783 [PMID: 29636867]
  49. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  50. PeerJ. 2018 Aug 07;6:e5363 [PMID: 30123704]
  51. Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4 [PMID: 18077471]
  52. Asian-Australas J Anim Sci. 2016 Dec;29(12):1702-1709 [PMID: 27004818]
  53. Clin Exp Rheumatol. 2020 Sep-Oct;38(5):822-833 [PMID: 32940208]
  54. Epigenomics. 2017 Sep;9(9):1175-1188 [PMID: 28803498]
  55. Sci Rep. 2021 Mar 11;11(1):5691 [PMID: 33707594]
  56. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W165-8 [PMID: 23716633]
  57. Transl Psychiatry. 2017 Jan 24;7(1):e1007 [PMID: 28117839]
  58. Genes (Basel). 2018 Aug 01;9(8): [PMID: 30071651]
  59. Biol Reprod. 2008 Dec;79(6):1021-9 [PMID: 18703424]
  60. Front Neurol. 2021 Dec 24;12:779003 [PMID: 35002930]
  61. Asian Pac J Cancer Prev. 2015;16(5):1781-7 [PMID: 25773825]
  62. Elife. 2015 Aug 12;4: [PMID: 26267216]

Word Cloud

Created with Highcharts 10.0.0NOAnetworkgenesassociatedRNAtreatmentusedmiRNAscircRNAsazoospermiacanstudiesncRNANOA-relatedinteractioncurrentstudycircularfoundbioinformaticsGnRHRdatabasesidentifyfunctionproteinsvaluablegenediagnosisIntroduction:Non-obstructiveetiologyinfertilitymenmayvariousclassificationshoweverhypogonadotropichypogonadismregardedclassgeneticfactorsFormershownnoncodingplaysessentialroleincidenceperformedmicroRNAmiRNAcircRNAmethodsoffernewperspectiveMethods:gonadotropin-releasinghormonereceptor-relatedprotein-proteinPPIextractedsearching'string-database'GOKEGGEnrichrpathwaysmolecularbiologicalprocessingFourincludingTargetScanmirDIPmiRmapmiRWalkextractlastcirc2GOcircBaseliteratureResults:identifiedfoursignalingeightsharedaffectexpression25originregulatemiRNAs'Conclusion:twohsa-miR-134-3phsa-miR-513C-3pthreeVCANNFATC3PRDM5performpathogenesisIdentificationnon-obstructiveazoospermia:in-silicoanalyses-experimentalresearchGNRHRproteinmicroRNAs

Similar Articles

Cited By