First Demonstration of Yttria-Stabilized Hafnia-Based Long-Retention Solid-State Electrolyte-Gated Transistor for Human-Like Neuromorphic Computing.

Dong-Gyu Jin, Hyun-Yong Yu
Author Information
  1. Dong-Gyu Jin: School of Electrical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
  2. Hyun-Yong Yu: School of Electrical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea. ORCID

Abstract

Electrolyte-gated transistors have strong potential for high-performance artificial synapses in neuromorphic bio-interfaces owing to their outstanding synaptic characteristics, low power consumption, and Human-like mechanisms. However, the short retention time is a hurdle to overcome owing to the natural diffusion of protons. Here, a novel modulation technique of ionic conductivity is proposed with yttria-stabilized hafnia for the first time to enhance the retention characteristic of a solid-state electrolyte-gated transistor-based artificial synapse. With the optimization of the ionic conductivity in yttria-stabilized hafnia, a high retention time of over 300 s and remarkable synaptic characteristics are accomplished by regulating channel conductance with precise modulation of the strength of the proton-electron coupling intensity along the input signals. Furthermore, pattern recognition simulation is conducted based on the measured synaptic characteristics, exhibiting 94.41% of operation accuracy, which implies a promising solution for neuromorphic in-memory computing systems with a high operation accuracy and low power consumption.

Keywords

References

  1. C. Mead, Proc. IEEE. 1990, 78, 1629.
  2. D. Kuzum, S. Yu, H.���S. Philip Wong, Nanotechnology 382001, 2013, 24,.
  3. J.���M. Yu, C. Lee, D.���J. Kim, H. Park, J.���K. Han, J. Hur, J.���K. Kim, M.���S. Kim, M. Seo, S. G. Im, Y.���K. Choi, Adv. Funct. Mater. 2021, 31, 2010971.
  4. Y. Li, J. Lu, D. Shang, Q. Liu, S. Wu, Z. Wu, X. Zhang, J. Yang, Z. Wang, H. Lv, M. Liu, Adv. Mater. 2020, 32, 2010971.
  5. D.���G. Jin, S.���H. Kim, S.���G. Kim, J. Park, E. Park, H.���Y. Yu, Small 2021, 17, 2100242.
  6. J. Lenz, F. Del Giudice, F. R. Geisenhof, F. Winterer, R. T. Weitz, Nat. Nanotechnol. 2019, 14, 579.
  7. E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D. James, M. J. Marinella, J. Joshua Yang, A. Salleo, A. Alec Talin, science, 364, 570
  8. N. Liu, Y. Liu, J. Hu, Y. He, X. Zhang, Q. Wan, Appl. Surf. Sci. 2019, 481, 1412.
  9. E. Ciftyurek, Z. Li, K. Schierbaum, Sensors 2023, 23, 29.
  10. F. Torricelli, D. Z. Adrahtas, Z. Bao, M. Berggren, F. Biscarini, A. Bonfiglio, C. A. Bortolotti, C. D. Frisbie, E. Macchia, G. G. Malliaras, I. Mcculloch, M. Moser, T.���Q. Nguyen, R. M. Owens, A. Salleo, A. Spanu, L. Torsi, Nat. Rev. Methods Primers 2021, 1, 66.
  11. S. Seo, J.���J. Lee, H.���J. Lee, H. W. Lee, S. Oh, J. J. Lee, K. Heo, J.���H. Park, ACS Appl Electron Mater. 2020, 2, 371.
  12. X. Feng, L. Qiao, J. Huang, J. Ning, D. Wang, J. Zhang, Y. Hao, Nanotechnology 2023, 34, 215201.
  13. H. H. Chouhdry, D. H. Lee, A. Bag, N.���E. Lee, Nat. Commun. 2023, 14, 821.
  14. L. S��vin, V. Razafindramanana, A. Julian���Jankowiak, J.���F. Justin, F. Mauvy, F. Rebillat, J. Eur. Ceram. Soc. 2020, 40, 5859.
  15. L. Shi, Y. Zhou, J. Yin, Z. Liu, J. Appl. Phys. 2010, 107, 014104.
  16. B.���W. Yao, J. Li, X.���D. Chen, M.���X. Yu, Z.���C. Zhang, Y. Li, T.���B. Lu, J. Zhang, Adv. Funct. Mater. 2021, 31, 2100069.
  17. D. Kireev, S. Liu, H. Jin, T. Patrick Xiao, C. H. Bennett, D. Akinwande, J. A. C. Incorvia, Nat. Commun. 2022, 13, 4386.
  18. M. T. Wang, Y. C. Lin, M. C. Chen, J. Electrochem. Soc. 1998, 145, 2538.
  19. N. Kumar, B. P. A. George, H. Abrahamse, V. Parashar, S. S. Ray, J. C. Ngila, Sci. Rep. 2017, 7, 9351.
  20. S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, M. E. Orazem, Nat. Rev. Methods Primers 2021, 1, 41.
  21. M. Alotaibi, L. Li, A. R. West, Phys. Chem. Chem. Phys. 2021, 23, 25951.
  22. M. A. Haque, A. B. Sulong, R. E. Rosli, E. H. Majlan, L. K. Shyuan, M. A. A. Mashud, Int. WIE Conf. on Electrical and Computer Engineering (WIECON���ECE), IEEE, New York City 2015.
  23. V. Bocharova, A. P. Sokolov, Macromolecules 2020, 53, 4141.
  24. Z. Gadjourova, Y. Andreev, D. Tunstall, P. Bruce, Nature 2001, 412, 520.
  25. A. C. M. Padilha, K. P. Mckenna, J. Appl. Phys. 2019, 126, 084105.
  26. H. Denawi, J. K. Demarais, C. S. Praveen, M. Rerat, P. Karamanis, Chem. Phys. Lett. 2021, 785, 139157
  27. G. H. Chen, Z. F. Hou, X. G. Gong, Q. Li, J. Appl. Phys. 2008, 104, 074101.
  28. X. Wang, D. Zhou, S. Li, X. Liu, P. Zhao, N. Sun, F. Ali, J. Wang, Ceram. Int. 2018, 44, 13867.
  29. X. Chen, L. Song, L. You, L. Zhao, Appl. Surf. Sci. 2013, 271, 248.
  30. M. Nand, S. Tripathi, P. Rajput, M. Kumar, Y. Kumar, S. K. Mandal, R. Urkude, M. Gupta, A. Dawar, S. Ojha, S. K. Rai, S. N. Jha, J. Alloys Compd. 2022, 928, 167099.
  31. S.���G. Kim, S.���H. Kim, J. Park, G.���S. Kim, J.���H. Park, K. C. Saraswat, J. Kim, H.���Y. Yu, ACS Nano 2019, 13, 10294.
  32. S. Seo, S.���H. Jo, S. Kim, J. Shim, S. Oh, J.���H. Kim, K. Heo, J.���W. Choi, C. Choi, S. Oh, D. Kuzum, H.���S. P. Wong, J.���H. Park, Nat. Commun. 2018, 9, 5106.
  33. V. Kharton, F. Marques, A. Atkinson, Solid State Ion 2004, 174, 135.
  34. A. G. Marinopoulos, Phys Rev. B Condens Matter Mater. Phys 2012, 86, 155144.
  35. S.���N. Choi, S.���M. Yoon, IEEE Electron Device Lett. 2020, 41, 425.
  36. H. Tang, K. Ishikawa, K. Ide, H. Hiramatsu, S. Ueda, N. Ohashi, H. Kumomi, H. Hosono, T. Kamiya, J. Appl. Phys. 2015, 118, 205703.
  37. M. Toledano���Luque, E. San Andr��s, A. Del Prado, I. M��rtil, M. L. Luc��a, G. Gonz��lez���D��az, F. L. Mart��nez, W. Bohne, J. R��hrich, E. Strub, J. Appl. Phys. 2007, 102, 044106.
  38. Y. Yun, P. Buragohain, M. Li, Z. Ahmadi, Y. Zhang, X. Li, H. Wang, J. Li, P. Lu, L. Tao, H. Wang, J. E. Shield, E. Y. Tsymbal, A. Gruverman, X. Xu, Nat. Mater. 2022, 21, 903.
  39. T. Olsen, U. Schr��der, S. M��ller, A. Krause, D. Martin, A. Singh, J. M��ller, M. Geidel, T. Mikolajick, Appl. Phys. Lett. 2012, 101, 082905.
  40. F. Huang, X. Chen, X. Liang, J. Qin, Y. Zhang, T. Huang, Z. Wang, B. Peng, P. Zhou, H. Lu, L. Zhang, L. Deng, M. Liu, Q. Liu, H. Tian, L. Bi, Phys. Chem. Chem. Phys. 2017, 19, 3486.
  41. J. Wu, Chem. Rev. 2022, 122, 10821.
  42. R. Homsi, N. Al���Azzam, B. Mohammad, A. Alazzam, IEEE Access 2023, 11,19347.
  43. J.���W. Jang, S. Park, G. W. Burr, H. Hwang, Y.���H. Jeong, IEEE Electron Device Lett. 2015, 36, 457.
  44. J. Zhou, N. Liu, L. Zhu, Y. Shi, Q. Wan, IEEE Electron Device Lett. 2015, 36, 198.
  45. J. Park, E. Park, S. Kim, H.���Y. Yu, ACS Appl. Mater. Interfaces 2019, 11, 32178.
  46. J. Park, E. Park, S.���G. Kim, D.���G. Jin, H.���Y. Yu, ACS Appl Electron Mater. 2021, 3, 5584.

Grants

  1. 2020R1A2C2004029/National Research Foundation of Korea
  2. RS-2023-00257003/Ministry of Science and ICT

Word Cloud

Created with Highcharts 10.0.0artificialsynapticcharacteristicsretentiontimeneuromorphicowinglowpowerconsumptionmodulationionicconductivityyttria-stabilizedhafniasynapsehighcouplingoperationaccuracyElectrolyte-gatedtransistorsstrongpotentialhigh-performancesynapsesbio-interfacesoutstandinghuman-likemechanismsHowevershorthurdleovercomenaturaldiffusionprotonsnoveltechniqueproposedfirstenhancecharacteristicsolid-stateelectrolyte-gatedtransistor-basedoptimization300 sremarkableaccomplishedregulatingchannelconductanceprecisestrengthproton-electronintensityalonginputsignalsFurthermorepatternrecognitionsimulationconductedbasedmeasuredexhibiting9441%impliespromisingsolutionin-memorycomputingsystemsFirstDemonstrationYttria-StabilizedHafnia-BasedLong-RetentionSolid-StateElectrolyte-GatedTransistorHuman-LikeNeuromorphicComputingelectrolyte���gatedfield���effecttransistoroxygenplasmatreatmentproton���electronsolid���stateelectrolyte

Similar Articles

Cited By (1)