Genome-wide analysis and characterization of HSP gene families (HSP20, HSP40, HSP60, HSP70, HSP90) in the yellow fever mosquito (Aedes aegypti) (Diptera: Culicidae).

Murat Turan
Author Information
  1. Murat Turan: Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey. ORCID

Abstract

The heat shock protein (HSP) gene families, present across prokaryotes to eukaryotes, play vital roles in growth, development, and heat resistance processes. While HSP proteins have been identified and characterized in various species, this study achieved the first genome-wide identification and characterization of HSP proteins in the Aedes aegypti genome. This study identified and assessed 80 potential HSP genes in Ae. aegypti. The phylogenetic relationships of HSP genes were investigated in Ae. aegypti, Anopheles stephensi, and Drosophila melanogaster. Additionally, the structural features, chromosomal locations, protein characteristics, 3D structure, protein-protein interactions, and microsatellites associated with HSP proteins were examined in Ae. aegypti. The phylogenetic analysis of HSP gene families revealed distinct intra-group relationships for each HSP group. Each family exhibited relatively conserved genetic structures and motif components. In the expression analysis of growth and development, high expression was observed in certain HSP20 and HSP70 genes, while others exhibited low expression. Notably, sex-dependent expression differences were observed, particularly in HSP20 genes. These findings, the relationships, evolution, and modification of HSP gene families are illuminated by these comprehensive findings, and a better understanding of the mechanisms underlying growth, development, and heat resistance in vector organisms is facilitated.

Keywords

References

  1. Biol Rev Camb Philos Soc. 2017 Nov;92(4):1859-1876 [PMID: 28980433]
  2. Reprod Biol Endocrinol. 2016 Jul 16;14(1):38 [PMID: 27423183]
  3. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  4. Bioinformatics. 2015 Apr 15;31(8):1296-7 [PMID: 25504850]
  5. Insects. 2023 Apr 30;14(5): [PMID: 37233060]
  6. Curr Issues Mol Biol. 2023 Jan 09;45(1):614-627 [PMID: 36661527]
  7. PLoS One. 2023 Feb 16;18(2):e0281917 [PMID: 36795713]
  8. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  9. Plant Pathol J. 2015 Dec;31(4):323-33 [PMID: 26676169]
  10. Front Plant Sci. 2015 Sep 25;6:773 [PMID: 26442082]
  11. Nucleic Acids Res. 2021 Jan 8;49(D1):D458-D460 [PMID: 33104802]
  12. J Insect Physiol. 2023 Jun;147:104520 [PMID: 37148996]
  13. Front Genet. 2023 Jan 26;14:1120861 [PMID: 36777720]
  14. Insect Mol Biol. 2012 Oct;21(5):535-43 [PMID: 22957810]
  15. BMC Infect Dis. 2019 Aug 28;19(1):750 [PMID: 31455279]
  16. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20 [PMID: 15980438]
  17. Cell Stress Chaperones. 2023 May;28(3):303-320 [PMID: 37071342]
  18. Genome Biol Evol. 2021 Mar 1;13(3): [PMID: 33501937]
  19. J Insect Physiol. 2009 Mar;55(3):279-85 [PMID: 19133268]
  20. Cell Stress Chaperones. 2015 Mar;20(2):207-12 [PMID: 25536931]
  21. Genomics. 2020 Nov;112(6):4442-4453 [PMID: 32739432]
  22. West J Emerg Med. 2016 Nov;17(6):671-679 [PMID: 27833670]
  23. Mol Biol Res Commun. 2018 Jun;7(2):77-82 [PMID: 30046621]
  24. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73 [PMID: 16845028]
  25. Philos Trans R Soc Lond B Biol Sci. 2023 Mar 27;378(1873):20220011 [PMID: 36744557]
  26. Cell Stress Chaperones. 2014 Jan;19(1):91-104 [PMID: 23702967]
  27. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  28. Indian J Microbiol. 2011 Jun;51(2):124-31 [PMID: 22654152]
  29. Insects. 2023 Feb 24;14(3): [PMID: 36975910]
  30. Nucleic Acids Res. 2021 Jan 8;49(D1):D1083-D1093 [PMID: 33196823]
  31. One Health. 2023 Apr 30;16:100555 [PMID: 37363263]
  32. Nature. 2018 Nov;563(7732):501-507 [PMID: 30429615]
  33. Int J Infect Dis. 2018 Feb;67:25-35 [PMID: 29196275]
  34. PLoS Med. 2014 May 06;11(5):e1001638 [PMID: 24800812]
  35. Iran J Biotechnol. 2020 Oct 01;18(4):e2529 [PMID: 34056019]
  36. Philos Trans R Soc Lond B Biol Sci. 2013 Mar 25;368(1617):20110409 [PMID: 23530259]
  37. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  38. J Insect Physiol. 2011 Nov;57(11):1562-7 [PMID: 21867709]
  39. PLoS Biol. 2009 Jul;7(7):e1000150 [PMID: 19597539]
  40. J Insect Physiol. 2007 Dec;53(12):1199-205 [PMID: 17651748]
  41. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5610-5 [PMID: 24616528]
  42. Science. 2000 Mar 24;287(5461):2185-95 [PMID: 10731132]
  43. Bioinformatics. 2012 Nov 1;28(21):2853-5 [PMID: 22923302]
  44. Front Plant Sci. 2017 May 01;8:689 [PMID: 28507559]
  45. BMC Genomics. 2009 Aug 24;10:393 [PMID: 19703271]
  46. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15223-8 [PMID: 9860950]
  47. PLoS Negl Trop Dis. 2023 Mar 29;17(3):e0011218 [PMID: 36989328]
  48. Mol Ecol. 2016 Mar;25(5):1141-56 [PMID: 26821170]
  49. Insect Sci. 2013 Apr;20(2):183-93 [PMID: 23955859]
  50. Acta Trop. 2017 Mar;167:121-127 [PMID: 28024869]
  51. J Hered. 2002 Jan-Feb;93(1):77-8 [PMID: 12011185]
  52. Comp Biochem Physiol Part D Genomics Proteomics. 2023 Mar;45:101053 [PMID: 36527761]
  53. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]

MeSH Term

Animals
Heat-Shock Proteins
Aedes
Phylogeny
Drosophila melanogaster
Yellow Fever
Mosquito Vectors
HSP70 Heat-Shock Proteins
HSP90 Heat-Shock Proteins

Chemicals

Heat-Shock Proteins
HSP70 Heat-Shock Proteins
HSP90 Heat-Shock Proteins

Word Cloud

Created with Highcharts 10.0.0HSPaegyptigenefamiliesgenesanalysisexpressionheatgrowthdevelopmentproteinsAedesAerelationshipsHSP20proteinresistanceidentifiedstudygenome-widecharacterizationphylogeneticfamilyexhibitedobservedHSP70findingsyellowfevermosquitoshockpresentacrossprokaryoteseukaryotesplayvitalrolesprocessescharacterizedvariousspeciesachievedfirstidentificationgenomeassessed80potentialinvestigatedAnophelesstephensiDrosophilamelanogasterAdditionallystructuralfeatureschromosomallocationscharacteristics3Dstructureprotein-proteininteractionsmicrosatellitesassociatedexaminedrevealeddistinctintra-groupgrouprelativelyconservedgeneticstructuresmotifcomponentshighcertainotherslowNotablysex-dependentdifferencesparticularlyevolutionmodificationilluminatedcomprehensivebetterunderstandingmechanismsunderlyingvectororganismsfacilitatedGenome-wideHSP40HSP60HSP90Diptera:Culicidae

Similar Articles

Cited By