Multimodal Nonlinear Hyperspectral Chemical Imaging Using Line-Scanning Vibrational Sum-Frequency Generation Microscopy.

Jackson C Wagner, Bin Yang, Zishan Wu, Wei Xiong
Author Information
  1. Jackson C Wagner: Department of Chemistry and Biochemistry, UC San Diego.
  2. Bin Yang: Department of Chemistry and Biochemistry, UC San Diego; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
  3. Zishan Wu: Department of Chemistry and Biochemistry, UC San Diego.
  4. Wei Xiong: Department of Chemistry and Biochemistry, UC San Diego; Materials Science and Engineering Program, UC San Diego; Department of Electrical and Computer Engineering, UC San Diego; w2xiong@ucsd.edu.

Abstract

Vibrational sum-frequency generation (VSFG), a second-order nonlinear optical signal, has traditionally been used to study molecules at interfaces as a spectroscopy technique with a spatial resolution of ~100 ��m. However, the spectroscopy is not sensitive to the heterogeneity of a sample. To study mesoscopically heterogeneous samples, we, along with others, pushed the resolution limit of VSFG spectroscopy down to ~1 ��m level and constructed the VSFG microscope. This imaging technique not only can resolve sample morphologies through imaging, but also record a broadband VSFG spectrum at every pixel of the images. Being a second-order nonlinear optical technique, its selection rule enables the visualization of non-centrosymmetric or chiral self-assembled structures commonly found in biology, materials science, and bioengineering, among others. In this article, the audience will be guided through an inverted transmission design that allows for imaging unfixed samples. This work also showcases that VSFG microscopy can resolve chemical-specific geometric information of individual self-assembled sheets by combining it with a neural network function solver. Lastly, the images obtained under brightfield, SHG, and VSFG configurations of various samples briefly discuss the unique information revealed by VSFG imaging.

References

  1. Nano Lett. 2014 Nov 12;14(11):6727-30 [PMID: 25337984]
  2. J Phys Chem B. 2022 Sep 8;126(35):6629-6641 [PMID: 36037433]
  3. J Am Chem Soc. 2023 Dec 12;: [PMID: 38085547]
  4. Langmuir. 2022 Mar 15;38(10):3017-3031 [PMID: 35238562]
  5. Biomed Opt Express. 2017 Aug 29;8(9):4230-4242 [PMID: 28966861]
  6. Phys Rev B Condens Matter. 1987 Feb 15;35(6):3047-3050 [PMID: 9941799]
  7. Langmuir. 2019 Oct 29;35(43):13815-13820 [PMID: 31584824]
  8. Annu Rev Phys Chem. 2021 Apr 20;72:279-306 [PMID: 33441031]
  9. J Am Chem Soc. 2011 Oct 26;133(42):16875-80 [PMID: 21899354]
  10. Nature. 2021 Jun;594(7861):62-65 [PMID: 34079138]
  11. Sci Adv. 2017 Nov 17;3(11):e1701508 [PMID: 29159282]
  12. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20902-7 [PMID: 22143772]
  13. J Am Chem Soc. 2021 Dec 22;143(50):21189-21194 [PMID: 34878776]
  14. Chem Rev. 2006 Apr;106(4):1140-54 [PMID: 16608175]
  15. Acc Chem Res. 2020 Jun 16;53(6):1139-1150 [PMID: 32437170]
  16. Langmuir. 2022 Dec 6;38(48):14704-14711 [PMID: 36394829]
  17. J Chem Phys. 2012 Sep 7;137(9):094706 [PMID: 22957585]
  18. J Am Chem Soc. 2015 Dec 2;137(47):14912-9 [PMID: 26544087]
  19. J Phys Chem A. 2022 Feb 17;126(6):951-956 [PMID: 35113564]
  20. J Phys Chem B. 2015 Feb 26;119(8):3356-65 [PMID: 25614936]
  21. Langmuir. 2005 Mar 29;21(7):2662-4 [PMID: 15779931]
  22. Opt Lett. 2011 Oct 1;36(19):3891-3 [PMID: 21964132]
  23. Annu Rev Phys Chem. 2013;64:579-603 [PMID: 23331304]
  24. J Phys Chem B. 2022 Sep 22;126(37):7192-7201 [PMID: 36098975]
  25. Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23385-23392 [PMID: 32907936]
  26. Annu Rev Phys Chem. 2015 Apr;66:189-216 [PMID: 25493712]
  27. J Am Chem Soc. 2007 Aug 22;129(33):10056-7 [PMID: 17661466]
  28. Nat Methods. 2018 Mar;15(3):173-182 [PMID: 29377014]
  29. J Am Chem Soc. 2008 Jun 25;130(25):8030-7 [PMID: 18517198]
  30. J Phys Chem B. 2019 Jul 25;123(29):6212-6221 [PMID: 31247140]
  31. Chem Rev. 2020 Apr 8;120(7):3420-3465 [PMID: 31939659]
  32. Chem Rev. 2017 Aug 23;117(16):10665-10693 [PMID: 28378588]
  33. J Phys Chem B. 2013 May 23;117(20):6149-56 [PMID: 23675654]
  34. Annu Rev Phys Chem. 2012;63:107-30 [PMID: 22224702]
  35. Annu Rev Phys Chem. 2013;64:77-99 [PMID: 23245525]
  36. Nat Commun. 2020 Oct 22;11(1):5344 [PMID: 33093482]
  37. J Chem Phys. 2022 Oct 7;157(13):134702 [PMID: 36209027]

Grants

  1. R35 GM138092/NIGMS NIH HHS

MeSH Term

Hyperspectral Imaging
Microscopy
Radionuclide Imaging
Bioengineering
Biomedical Engineering

Word Cloud

Created with Highcharts 10.0.0VSFGimagingspectroscopytechniquesamplesVibrationalsecond-ordernonlinearopticalstudyresolution��msampleotherscanresolvealsoimagesself-assembledinformationsum-frequencygenerationsignaltraditionallyusedmoleculesinterfacesspatial~100Howeversensitiveheterogeneitymesoscopicallyheterogeneousalongpushedlimit~1levelconstructedmicroscopemorphologiesrecordbroadbandspectrumeverypixelselectionruleenablesvisualizationnon-centrosymmetricchiralstructurescommonlyfoundbiologymaterialssciencebioengineeringamongarticleaudiencewillguidedinvertedtransmissiondesignallowsunfixedworkshowcasesmicroscopychemical-specificgeometricindividualsheetscombiningneuralnetworkfunctionsolverLastlyobtainedbrightfieldSHGconfigurationsvariousbrieflydiscussuniquerevealedMultimodalNonlinearHyperspectralChemicalImagingUsingLine-ScanningSum-FrequencyGenerationMicroscopy

Similar Articles

Cited By