GETV nsP2 plays a critical role in the interferon antagonism and viral pathogenesis.

Chunxiao Mou, Hui Meng, Kaichuang Shi, Yanmei Huang, Meiqi Liu, Zhenhai Chen
Author Information
  1. Chunxiao Mou: College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China.
  2. Hui Meng: College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China.
  3. Kaichuang Shi: Guangxi Center for Animal Disease Control and Prevention, Nanning, GX, China.
  4. Yanmei Huang: College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China.
  5. Meiqi Liu: College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China.
  6. Zhenhai Chen: College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China. zhenhai@yzu.edu.cn.

Abstract

Getah virus (GETV) was becoming more serious and posing a potential threat to animal safety and public health. Currently, there is limited comprehension regarding the pathogenesis and immune evasion mechanisms employed by GETV. Our study reveals that GETV infection exhibits the capacity for interferon antagonism. Specifically, the nonstructural protein nsP2 of GETV plays a crucial role in evading the host immune response. GETV nsP2 effectively inhibits the induction of IFN-β by blocking the phosphorylation and nuclear translocation of IRF3. Additionally, GETV nsP2 hinders the phosphorylation of STAT1 and its nuclear accumulation, leading to significantly impaired JAK-STAT signaling. Furthermore, the amino acids K648 and R649, situated in the C-terminal region of GETV nsP2, play a crucial role in facilitating nuclear localization. Not only do they affect the interference of nsP2 with the innate immune response, but they also exert an influence on the pathogenicity of GETV in mice. In summary, our study reveals novel mechanisms by which GETV evades the immune system, thereby offering a foundation for comprehending the pathogenic nature of GETV. Video Abstract.

Keywords

References

  1. J Microbiol Biotechnol. 2019 Nov 28;29(11):1852-1859 [PMID: 31635445]
  2. J Biol Chem. 2014 Feb 28;289(9):5635-53 [PMID: 24407286]
  3. J Virol. 2009 Oct;83(19):10036-47 [PMID: 19641001]
  4. Front Microbiol. 2019 Jun 20;10:1416 [PMID: 31281304]
  5. Front Vet Sci. 2020 Dec 03;7:552517 [PMID: 33344520]
  6. Transbound Emerg Dis. 2020 Sep;67(5):2249-2253 [PMID: 32277601]
  7. J Virol. 2020 Jan 17;94(3): [PMID: 31694940]
  8. J Virol. 2010 Oct;84(20):10877-87 [PMID: 20686047]
  9. Annu Rev Immunol. 2002;20:853-85 [PMID: 11861620]
  10. J Virol. 2016 Aug 12;90(17):8030 [PMID: 27520947]
  11. PLoS Pathog. 2020 Oct 15;16(10):e1008999 [PMID: 33057424]
  12. J Virol. 2009 Oct;83(20):10571-81 [PMID: 19656875]
  13. Transbound Emerg Dis. 2022 Jul;69(4):e1037-e1050 [PMID: 34812572]
  14. Front Cell Dev Biol. 2021 Feb 11;9:625711 [PMID: 33644063]
  15. Virology. 2020 Mar;542:63-70 [PMID: 32056669]
  16. Microbiol Rev. 1994 Sep;58(3):491-562 [PMID: 7968923]
  17. J Exp Med. 2010 Feb 15;207(2):429-42 [PMID: 20123960]
  18. J Gen Virol. 2008 Mar;89(Pt 3):676-686 [PMID: 18272758]
  19. Circ Res. 2000 Feb 4;86(2):233-40 [PMID: 10666420]
  20. Virology. 2016 Jan;487:230-41 [PMID: 26550947]
  21. J Virol. 2002 Nov;76(22):11254-64 [PMID: 12388685]
  22. J Virol. 2012 Jul;86(13):7180-91 [PMID: 22514352]
  23. J Immunol. 2012 Apr 1;188(7):2967-71 [PMID: 22371392]
  24. Vet Microbiol. 2023 Jun;281:109742 [PMID: 37075664]
  25. Virus Genes. 2007 Dec;35(3):597-603 [PMID: 17570048]
  26. Front Immunol. 2022 Sep 12;13:1005586 [PMID: 36172361]
  27. J Virol. 2018 Aug 16;92(17): [PMID: 29925658]
  28. Immunity. 2006 Sep;25(3):349-60 [PMID: 16979567]
  29. J Virol. 2013 Sep;87(18):10394-400 [PMID: 23864632]
  30. Cell. 2006 Feb 24;124(4):783-801 [PMID: 16497588]
  31. J Gen Virol. 2015 Sep;96(9):2483-2500 [PMID: 26219641]
  32. J Virol. 2019 Feb 5;93(4): [PMID: 30487275]
  33. J Gen Virol. 2008 Jun;89(Pt 6):1446-1456 [PMID: 18474561]
  34. Cell Rep. 2023 May 30;42(5):112441 [PMID: 37104090]
  35. Adv Virus Res. 2021;111:111-156 [PMID: 34663497]
  36. J Virol. 2022 Mar 23;96(6):e0175121 [PMID: 34986000]
  37. Emerg Infect Dis. 2015 May;21(5):883-5 [PMID: 25898181]
  38. J Virol. 2012 Sep;86(18):9888-98 [PMID: 22761364]
  39. Virology. 2010 Mar 30;399(1):1-10 [PMID: 20097400]
  40. Int Rev Immunol. 2004 Jan-Apr;23(1-2):7-24 [PMID: 14690853]
  41. Virology. 2009 Dec 5;395(1):121-32 [PMID: 19782381]

Grants

  1. R2107/Open Project Program of Jiangsu Key Laboratory of Zoonosis
  2. AB21238003/Guangxi Key Research and Development Program
  3. CX (21) 2014/Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province
  4. D18007/Project 211

MeSH Term

Animals
Mice
Interferons
Alphavirus
Cell Line
Immunity, Innate
Immune Evasion

Chemicals

Interferons

Word Cloud

Created with Highcharts 10.0.0GETVnsP2immunerolenuclearGetahviruspathogenesismechanismsstudyrevealsinterferonantagonismproteinplayscrucialresponsephosphorylationlocalizationbecomingseriousposingpotentialthreatanimalsafetypublichealthCurrentlylimitedcomprehensionregardingevasionemployedinfectionexhibitscapacitySpecificallynonstructuralevadinghosteffectivelyinhibitsinductionIFN-βblockingtranslocationIRF3AdditionallyhindersSTAT1accumulationleadingsignificantlyimpairedJAK-STATsignalingFurthermoreaminoacidsK648R649situatedC-terminalregionplayfacilitatingaffectinterferenceinnatealsoexertinfluencepathogenicitymicesummarynovelevadessystemtherebyofferingfoundationcomprehendingpathogenicnatureVideoAbstractcriticalviralInterferonNuclearViralpathogensis

Similar Articles

Cited By

No available data.