Cath-KP, a novel peptide derived from frog skin, prevents oxidative stress damage in a Parkinson's disease model.

Huanpeng Lu, Jinwei Chai, Zijian Xu, Jiena Wu, Songzhe He, Hang Liao, Peng Huang, Xiaowen Huang, Xi Chen, Haishan Jiang, Shaogang Qu, Xueqing Xu
Author Information
  1. Huanpeng Lu: Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
  2. Jinwei Chai: Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
  3. Zijian Xu: Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
  4. Jiena Wu: Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
  5. Songzhe He: Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
  6. Hang Liao: Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
  7. Peng Huang: Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
  8. Xiaowen Huang: Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
  9. Xi Chen: Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
  10. Haishan Jiang: Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
  11. Shaogang Qu: Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341001, China.
  12. Xueqing Xu: Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail: Xu2003@smu.edu.cn.

Abstract

Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( ). Structural analysis using circular dichroism and homology modeling revealed a unique conformation for Cath-KP. experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP )-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP -induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.

Keywords

Associated Data

SRA | PRJNA1021395

References

  1. J Am Chem Soc. 2004 Aug 11;126(31):9506-7 [PMID: 15291531]
  2. Zool Res. 2021 Mar 18;42(2):138-140 [PMID: 33554486]
  3. Oxid Med Cell Longev. 2022 Sep 5;2022:2615178 [PMID: 36105482]
  4. J Med Chem. 2013 May 9;56(9):3546-56 [PMID: 23594231]
  5. Zool Res. 2019 Nov 18;40(6):488-505 [PMID: 31592585]
  6. Oxid Med Cell Longev. 2019 Apr 3;2019:9421037 [PMID: 31139305]
  7. Mol Biol Rep. 2020 Apr;47(4):2417-2425 [PMID: 32108303]
  8. Dev Neurobiol. 2008 Apr;68(5):559-74 [PMID: 18188865]
  9. Natl Sci Rev. 2020 Dec 10;8(3):nwaa292 [PMID: 34691601]
  10. Toxicol Sci. 2004 May;79(1):137-46 [PMID: 14976342]
  11. Acta Pharmacol Sin. 2017 Oct;38(10):1317-1328 [PMID: 28649132]
  12. Ageing Res Rev. 2019 Sep;54:100942 [PMID: 31415806]
  13. Amino Acids. 2012 Aug;43(2):677-85 [PMID: 22009138]
  14. Biochem Biophys Res Commun. 2017 Jun 10;487(4):782-788 [PMID: 28433634]
  15. Front Pharmacol. 2018 Dec 13;9:1444 [PMID: 30618742]
  16. J Neurochem. 2009 Jun;109(6):1791-9 [PMID: 19457134]
  17. Biochem Biophys Res Commun. 2016 Feb 5;470(2):453-459 [PMID: 26768367]
  18. Cell Death Dis. 2021 Oct 11;12(10):928 [PMID: 34635643]
  19. Biochim Biophys Acta. 2010 Jun;1798(6):1119-28 [PMID: 20214875]
  20. Molecules. 2021 Feb 28;26(5): [PMID: 33671094]
  21. Metab Brain Dis. 2008 Mar;23(1):51-69 [PMID: 18030609]
  22. J Med Chem. 2018 Dec 13;61(23):10709-10723 [PMID: 30427189]
  23. J Nanobiotechnology. 2017 Feb 7;15(1):12 [PMID: 28173812]
  24. Free Radic Biol Med. 2008 Feb 15;44(4):671-81 [PMID: 18036351]
  25. FASEB J. 2005 Nov;19(13):1899-901 [PMID: 16148027]
  26. Arch Biochem Biophys. 2011 Apr 1;508(1):1-12 [PMID: 21176768]
  27. Front Cell Infect Microbiol. 2022 Nov 09;12:1022879 [PMID: 36439235]
  28. Lancet. 2021 Jun 12;397(10291):2284-2303 [PMID: 33848468]
  29. Nutr Res. 2018 Oct;58:62-71 [PMID: 30340816]
  30. Sci Rep. 2017 Nov 13;7(1):15371 [PMID: 29133814]
  31. Phytother Res. 2021 Mar;35(3):1585-1596 [PMID: 33118665]
  32. Neurochem Res. 2008 Dec;33(12):2416-26 [PMID: 18415676]
  33. Neurochem Res. 2015 Jul;40(7):1463-71 [PMID: 25994859]
  34. Cell Biol Int. 2018 Jan;42(1):84-94 [PMID: 28851138]
  35. Oxid Med Cell Longev. 2022 May 27;2022:9626703 [PMID: 35669855]
  36. Sci Rep. 2015 Jun 26;5:11719 [PMID: 26114640]
  37. Biochem Biophys Res Commun. 2000 Dec 29;279(3):961-4 [PMID: 11162457]
  38. Neurology. 2007 Jan 30;68(5):384-6 [PMID: 17082464]
  39. Exp Neurol. 2002 Nov;178(1):80-90 [PMID: 12460610]
  40. Trends Pharmacol Sci. 2017 Apr;38(4):406-424 [PMID: 28209404]
  41. Comp Biochem Physiol C Toxicol Pharmacol. 2019 Mar;217:68-75 [PMID: 30500452]
  42. Peptides. 2022 Apr;150:170712 [PMID: 34929265]
  43. Mol Cell Proteomics. 2009 Mar;8(3):571-83 [PMID: 19028675]
  44. Curr Pharm Des. 2007;13(28):2853-9 [PMID: 17979730]
  45. Exp Eye Res. 2012 Jan;94(1):63-70 [PMID: 22138557]
  46. Dev Comp Immunol. 2021 Mar;116:103928 [PMID: 33242568]
  47. PLoS One. 2015 May 26;10(5):e0127953 [PMID: 26010745]
  48. J Adv Res. 2021 Sep 08;34:1-12 [PMID: 35024177]
  49. PLoS One. 2019 Apr 25;14(4):e0215277 [PMID: 31022188]
  50. EMBO Rep. 2022 Sep 5;23(9):e53234 [PMID: 35913019]
  51. Glia. 2010 May;58(7):755-67 [PMID: 20091789]
  52. J Neural Transm (Vienna). 2010 Dec;117(12):1337-51 [PMID: 20931248]
  53. Zool Res. 2021 Mar 18;42(2):141-152 [PMID: 33527802]
  54. Sci Rep. 2018 Jan 17;8(1):943 [PMID: 29343843]
  55. Elife. 2021 Apr 20;10: [PMID: 33875135]
  56. Autophagy. 2015;11(10):1745-59 [PMID: 26292069]
  57. Pharmacol Res. 2023 Jul;193:106779 [PMID: 37121496]
  58. Neural Plast. 2020 Nov 17;2020:8872296 [PMID: 33281897]
  59. Chem Rev. 2015 Feb 25;115(4):1760-846 [PMID: 25594509]
  60. Cells. 2019 Dec 28;9(1): [PMID: 31905606]
  61. Sci Rep. 2016 Jan 27;6:19866 [PMID: 26813022]
  62. Neurochem Int. 2018 Jul;117:174-187 [PMID: 28532681]
  63. J Cell Sci. 2003 Apr 15;116(Pt 8):1409-16 [PMID: 12640026]
  64. Life Sci. 2020 Aug 1;254:117753 [PMID: 32387419]
  65. Neuron. 2003 Sep 11;39(6):889-909 [PMID: 12971891]
  66. Free Radic Biol Med. 2010 May 1;48(9):1173-81 [PMID: 20138142]

MeSH Term

Animals
Mice
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
1-Methyl-4-phenylpyridinium
Antioxidants
Cathelicidins
Dyskinesias
Neuroprotective Agents
Oxidative Stress
Parkinson Disease

Chemicals

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
1-Methyl-4-phenylpyridinium
Antioxidants
Cathelicidins
Neuroprotective Agents

Word Cloud

Created with Highcharts 10.0.0PDCath-KPoxidativestressantioxidantdiseasepeptide-inducedParkinson'sdyskinesiatherapeuticstudynovelcathelicidinidentifiedskinfrogpropertiesMPPcell2micedamagefactorTHmodelneurodegenerativeconditionresultsplayingpivotalroleprogressionAntioxidantpeptidesmaythuspresentpotentialGCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYVAsiaticpaintedStructuralanalysisusingcirculardichroismhomologymodelingrevealeduniqueconformationexperimentsincludingfreeradicalscavengingferric-reducinganalysesconfirmedUsing1-methyl-4-phenylpyridiniumiondopamineline1-methyl-4-phenyl-136-tetrahydropyridineMPTPfoundpenetratecellsreachdeepbraintissuesresultingimprovedviabilityreducedstress-inducedpromotingenzymeexpressionalleviatingmitochondrialintracellularreactiveoxygenspeciesaccumulationSirtuin-1Sirt1/Nuclearerythroid2-relatedNrf2pathwayactivationfocaladhesionkinaseFAKp38alsoregulatoryelementsMPTP-inducedadministrationincreasednumbertyrosinehydroxylase-positiveneuronsrestoredcontentamelioratedbestknowledgefirstreportdemonstratingpotentneuroprotectivetargetingfindingsexpandknownfunctionscathelicidinsholdpromisedevelopmentagentsderivedpreventsNeuroprotectionOxidativeParkinson’sPeptide

Similar Articles

Cited By