In diabetic male Wistar rats, quercetin-conjugated superparamagnetic iron oxide nanoparticles have an effect on the SIRT1/p66Shc-mediated pathway related to cognitive impairment.

Mahnaz Karami Chamgordani, Akram Bardestani, Shiva Ebrahimpour, Abolghasem Esmaeili
Author Information
  1. Mahnaz Karami Chamgordani: Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran.
  2. Akram Bardestani: Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran.
  3. Shiva Ebrahimpour: Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran.
  4. Abolghasem Esmaeili: Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran. aesmaeili@sci.ui.ac.ir.

Abstract

BACKGROUND: Quercetin (QC) possesses a variety of health-promoting effects in pure and in conjugation with nanoparticles. Since the mRNA-SIRT1/p66Shc pathway and microRNAs (miRNAs) are implicated in the oxidative process, we aimed to compare the effects of QC and QC-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) on this pathway.
METHODS: Through the use of the chemical coprecipitation technique (CPT), SPIONs were synthesized, coated with dextran, and conjugated with quercetin. Adult male Wistar rats were given intraperitoneal injections of streptozotocin to look for signs of type 1 diabetes (T1D). The animals were randomized into five groups: the control group got deionized water (DI), free QC solution (25 mg/kg), SPIONs (25 mg/kg), and QCSPIONs (25 mg/kg), and all groups received repeat doses administered orally over 35 days. Real-time quantitative PCR was used to assess the levels of miR-34a, let-7a-p5, SIRT1, p66Shc, CASP3, and PARP1 expression in the hippocampus of diabetic rats.
RESULTS: In silico investigations identified p66Shc, CASP3, and PARP1 as targets of let-7a-5p and miR-34a as possible regulators of SIRT1 genes. The outcomes demonstrated that diabetes elevated miR-34a, p66Shc, CASP3, and PARP1 and downregulated let-7a-5p and SIRT1 expression. In contrast to the diabetic group, QCSPIONs boosted let-7a-5p expression levels and consequently lowered p66Shc, CASP3, and PARP1 expression levels. QCSPIONs also reduced miR-34a expression, which led to an upsurge in SIRT1 expression.
CONCLUSION: Our results suggest that QCSPIONs can regulate the SIRT1/p66Shc-mediated signaling pathway and can be considered a promising candidate for ameliorating the complications of diabetes.

Keywords

References

  1. Nanomaterials (Basel). 2020 Apr 27;10(5): [PMID: 32349362]
  2. Diabetes. 2010 Apr;59(4):1006-15 [PMID: 20068143]
  3. Acta Biomater. 2017 Aug;58:181-195 [PMID: 28536061]
  4. Front Endocrinol (Lausanne). 2020 Nov 16;11:568861 [PMID: 33304318]
  5. Apoptosis. 2008 Oct;13(10):1215-22 [PMID: 18758960]
  6. Complement Ther Med. 2022 Jun;66:102819 [PMID: 35240291]
  7. Trends Cell Biol. 2008 Oct;18(10):505-16 [PMID: 18774294]
  8. Sci Rep. 2020 Sep 29;10(1):15957 [PMID: 32994439]
  9. Oncotarget. 2016 Nov 15;7(46):74484-74495 [PMID: 27780933]
  10. Indian J Pharmacol. 2017 Jan-Feb;49(1):60-64 [PMID: 28458424]
  11. J Vet Med Sci. 2018 Apr 27;80(4):676-683 [PMID: 29563391]
  12. Oxid Med Cell Longev. 2014;2014:102158 [PMID: 25215171]
  13. J Colloid Interface Sci. 2014 Dec 15;436:234-42 [PMID: 25278361]
  14. Biomed Pharmacother. 2022 Jul;151:113108 [PMID: 35594707]
  15. Adv Drug Deliv Rev. 2011 Jan-Feb;63(1-2):24-46 [PMID: 20685224]
  16. Prog Neurobiol. 2020 Feb;185:101732 [PMID: 31816349]
  17. Sci Rep. 2021 Apr 21;11(1):8618 [PMID: 33883592]
  18. Sci Rep. 2018 Feb 16;8(1):3213 [PMID: 29453337]
  19. Front Physiol. 2012 Mar 30;3:68 [PMID: 22479251]
  20. Cardiovasc Res. 2012 Mar 15;93(4):583-93 [PMID: 22065734]
  21. Neurochem Res. 2015 May;40(5):894-905 [PMID: 25687767]
  22. J Nanobiotechnology. 2020 Jan 28;18(1):22 [PMID: 31992302]
  23. Biomedicines. 2021 May 26;9(6): [PMID: 34073513]
  24. Cell Death Differ. 2010 Jul;17(7):1104-14 [PMID: 19960023]
  25. J Neuroimmune Pharmacol. 2018 Mar;13(1):24-38 [PMID: 28808887]
  26. J Neurochem. 2000 Feb;74(2):740-53 [PMID: 10646526]
  27. Arterioscler Thromb Vasc Biol. 2016 Dec;36(12):2394-2403 [PMID: 27789474]
  28. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5217-22 [PMID: 17360381]
  29. Crit Rev Food Sci Nutr. 2017 Aug 13;57(12):2589-2599 [PMID: 26357880]
  30. Aging (Albany NY). 2020 Apr 20;12(8):7015-7029 [PMID: 32312941]
  31. Cell. 2010 Jul 23;142(2):320-32 [PMID: 20655472]
  32. Sci Rep. 2020 Sep 15;10(1):15070 [PMID: 32934245]
  33. Basic Res Cardiol. 2019 Jun 4;114(4):29 [PMID: 31165272]
  34. Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):711-7 [PMID: 18239155]
  35. J Biomed Sci. 2017 Sep 19;24(1):76 [PMID: 28927401]
  36. J Clin Med. 2020 Dec 23;10(1): [PMID: 33374507]
  37. Front Endocrinol (Lausanne). 2018 Oct 15;9:614 [PMID: 30374331]
  38. Trends Endocrinol Metab. 2014 Jun;25(6):285-92 [PMID: 24656914]
  39. Nature. 2004 Nov 11;432(7014):226-30 [PMID: 15538371]
  40. Front Aging Neurosci. 2019 Jun 13;11:137 [PMID: 31249522]
  41. Brain Res Bull. 2011 Oct 10;86(3-4):272-6 [PMID: 21827835]
  42. Mol Psychiatry. 2017 Apr;22(4):605-614 [PMID: 27431297]
  43. Mol Cancer Res. 2017 Mar;15(3):340-347 [PMID: 28031413]
  44. Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13421-6 [PMID: 18755897]
  45. BMC Neurosci. 2017 Jun 26;18(1):51 [PMID: 28651647]
  46. Sci Rep. 2017 Sep 19;7(1):11879 [PMID: 28928469]
  47. Int J Mol Sci. 2019 Oct 31;20(21): [PMID: 31683538]
  48. Int J Nanomedicine. 2012;7:3445-71 [PMID: 22848170]
  49. Life Sci. 2019 May 1;224:109-119 [PMID: 30914316]
  50. J Clin Endocrinol Metab. 2014 Sep;99(9):E1681-5 [PMID: 24937531]
  51. Front Endocrinol (Lausanne). 2018 Aug 31;9:496 [PMID: 30233495]
  52. Cancer Epidemiol Biomarkers Prev. 2012 Dec;21(12):2176-84 [PMID: 23035181]
  53. Oxid Med Cell Longev. 2013;2013:564961 [PMID: 23606925]
  54. Cells. 2019 Feb 12;8(2): [PMID: 30759843]
  55. Ageing Res Rev. 2020 Nov;63:101139 [PMID: 32795504]
  56. Sci Rep. 2016 Jan 11;6:18962 [PMID: 26752681]
  57. Eur J Med Chem. 2018 Jul 15;155:889-904 [PMID: 29966915]
  58. Int J Nanomedicine. 2018 Oct 11;13:6311-6324 [PMID: 30349252]
  59. Biomed Pharmacother. 2016 Dec;84:559-568 [PMID: 27694000]
  60. Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1714-1719 [PMID: 28137876]
  61. Int J Nanomedicine. 2019 Mar 27;14:2157-2169 [PMID: 30992663]
  62. Diabetes. 2013 Jun;62(6):1800-7 [PMID: 23704521]
  63. J Diabetes Res. 2017;2017:3417306 [PMID: 29379801]
  64. Saudi J Biol Sci. 2017 Sep;24(6):1186-1194 [PMID: 28855811]
  65. Ageing Res Rev. 2020 Sep;62:101095 [PMID: 32535272]
  66. Int J Oncol. 2014 Oct;45(4):1391-400 [PMID: 25017900]
  67. Mol Neurobiol. 2015 Oct;52(2):913-26 [PMID: 26099304]
  68. Mem Inst Oswaldo Cruz. 2005 Mar;100 Suppl 1:29-37 [PMID: 15962096]
  69. Oxid Med Cell Longev. 2016;2016:9831825 [PMID: 26788256]
  70. Pediatr Res. 2015 Nov;78(5):513-9 [PMID: 26200703]
  71. Int J Mol Sci. 2021 Apr 07;22(8): [PMID: 33917107]
  72. Mol Neurobiol. 2018 Feb;55(2):1568-1579 [PMID: 28185128]
  73. Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1037-1045 [PMID: 27156888]
  74. Genomics Proteomics Bioinformatics. 2016 Jun;14(3):131-139 [PMID: 27240471]
  75. BMC Pharmacol Toxicol. 2018 Sep 25;19(1):59 [PMID: 30253803]
  76. Aging Cell. 2014 Feb;13(1):185-92 [PMID: 24165399]
  77. Front Endocrinol (Lausanne). 2018 May 28;9:274 [PMID: 29892266]
  78. J Diabetes Res. 2017;2017:7121827 [PMID: 29164153]
  79. Mol Cell Biol. 2009 Aug;29(15):4116-29 [PMID: 19470756]
  80. Circ Res. 2012 Jul 20;111(3):278-89 [PMID: 22693349]
  81. Biomed Rep. 2015 May;3(3):333-342 [PMID: 26137232]
  82. Age (Dordr). 2014 Apr;36(2):613-23 [PMID: 24142524]
  83. Proteomics. 2008 Jan;8(1):45-61 [PMID: 18095365]
  84. Mediators Inflamm. 2013;2013:510451 [PMID: 24347828]
  85. J Nanobiotechnology. 2021 Oct 18;19(1):327 [PMID: 34663344]

MeSH Term

Rats
Male
Animals
Rats, Wistar
Quercetin
Src Homology 2 Domain-Containing, Transforming Protein 1
Caspase 3
Diabetes Mellitus, Experimental
Sirtuin 1
MicroRNAs
Magnetic Iron Oxide Nanoparticles
Cognitive Dysfunction

Chemicals

Quercetin
SHC1 protein, human
Src Homology 2 Domain-Containing, Transforming Protein 1
Caspase 3
Sirtuin 1
MicroRNAs

Word Cloud

Created with Highcharts 10.0.0expressionpathwayQCSPIONsnanoparticlesmiR-34aSIRT1p66ShcCASP3PARP1QCironoxideratsdiabetes25 mg/kglevelsdiabeticlet-7a-5pSIRT1/p66Shc-mediatedQuercetineffectssuperparamagneticSPIONsmaleWistargroupcanBACKGROUND:possessesvarietyhealth-promotingpureconjugationSincemRNA-SIRT1/p66ShcmicroRNAsmiRNAsimplicatedoxidativeprocessaimedcompareQC-conjugatedMETHODS:usechemicalcoprecipitationtechniqueCPTsynthesizedcoateddextranconjugatedquercetinAdultgivenintraperitonealinjectionsstreptozotocinlooksignstype1T1Danimalsrandomizedfivegroups:controlgotdeionizedwaterDIfreesolutiongroupsreceivedrepeatdosesadministeredorally35daysReal-timequantitativePCRusedassesslet-7a-p5hippocampusRESULTS:silicoinvestigationsidentifiedtargetspossibleregulatorsgenesoutcomesdemonstratedelevateddownregulatedcontrastboostedconsequentlyloweredalsoreducedledupsurgeCONCLUSION:resultssuggestregulatesignalingconsideredpromisingcandidateamelioratingcomplicationsquercetin-conjugatedeffectrelatedcognitiveimpairmentDiabetesHippocampusSuperparamagnetic

Similar Articles

Cited By