Graph Neural Networks in Cancer and Oncology Research: Emerging and Future Trends.

Grigoriy Gogoshin, Andrei S Rodin
Author Information
  1. Grigoriy Gogoshin: Department of Computational and Quantitative Medicine, Beckman Research Institute, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA. ORCID
  2. Andrei S Rodin: Department of Computational and Quantitative Medicine, Beckman Research Institute, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA. ORCID

Abstract

Next-generation cancer and oncology research needs to take full advantage of the multimodal structured, or graph, information, with the graph data types ranging from molecular structures to spatially resolved imaging and digital pathology, biological networks, and knowledge graphs. Graph Neural Networks (GNNs) efficiently combine the graph structure representations with the high predictive performance of deep learning, especially on large multimodal datasets. In this review article, we survey the landscape of recent (2020-present) GNN applications in the context of cancer and oncology research, and delineate six currently predominant research areas. We then identify the most promising directions for future research. We compare GNNs with graphical models and "non-structured" deep learning, and devise guidelines for cancer and oncology researchers or physician-scientists, asking the question of whether they should adopt the GNN methodology in their research pipelines.

Keywords

References

  1. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34529029]
  2. NAR Genom Bioinform. 2023 Jun 28;5(2):lqad063 [PMID: 37680392]
  3. J Gastrointest Surg. 2023 Jan;27(1):162-165 [PMID: 35915376]
  4. Life (Basel). 2022 Oct 11;12(10): [PMID: 36295013]
  5. Comput Biol Med. 2023 Sep;164:107201 [PMID: 37517325]
  6. Cell Rep Med. 2023 Feb 21;4(2):100933 [PMID: 36738739]
  7. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 36088549]
  8. Nat Mach Intell. 2019 May;1(5):206-215 [PMID: 35603010]
  9. Neural Netw. 2023 Oct;167:213-222 [PMID: 37660670]
  10. IEEE J Biomed Health Inform. 2023 Jan 02;PP: [PMID: 37018304]
  11. IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):699-709 [PMID: 34033545]
  12. Brief Bioinform. 2022 Nov 19;23(6): [PMID: 36198846]
  13. Methods. 2023 May;213:1-9 [PMID: 36933628]
  14. Quant Imaging Med Surg. 2023 Aug 1;13(8):5333-5348 [PMID: 37581061]
  15. Bioinformatics. 2021 Sep 29;37(18):2930-2937 [PMID: 33739367]
  16. Database (Oxford). 2023 Jun 13;2023: [PMID: 37311149]
  17. Hum Genomics. 2021 Jun 7;15(1):33 [PMID: 34099048]
  18. Med Phys. 2022 Aug;49(8):5523-5536 [PMID: 35536056]
  19. IEEE J Biomed Health Inform. 2022 Jun;26(6):2839-2849 [PMID: 34813484]
  20. IEEE Trans Nanobioscience. 2020 Jan;19(1):117-126 [PMID: 31443039]
  21. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 34293850]
  22. Nat Commun. 2022 Jul 22;13(1):4250 [PMID: 35869055]
  23. Brief Bioinform. 2023 Mar 19;24(2): [PMID: 36682018]
  24. Cancers (Basel). 2023 Aug 22;15(17): [PMID: 37686486]
  25. Elife. 2022 Oct 04;11: [PMID: 36194194]
  26. Bioinformatics. 2020 Apr 15;36(8):2538-2546 [PMID: 31904845]
  27. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 36037084]
  28. J Cheminform. 2021 Feb 17;13(1):12 [PMID: 33597034]
  29. Bioinformatics. 2021 Jul 12;37(Suppl_1):i418-i425 [PMID: 34252965]
  30. Genes (Basel). 2022 Sep 28;13(10): [PMID: 36292644]
  31. Transl Cancer Res. 2022 Oct;11(10):3853-3868 [PMID: 36388027]
  32. Comput Biol Med. 2023 Mar;154:106576 [PMID: 36736097]
  33. Phys Med Biol. 2022 May 24;67(11): [PMID: 35483350]
  34. BioData Min. 2023 Jul 22;16(1):23 [PMID: 37481666]
  35. Gut. 2023 Sep;72(9):1709-1721 [PMID: 37173125]
  36. Metabolites. 2023 Feb 24;13(3): [PMID: 36984779]
  37. Cancers (Basel). 2023 Jul 13;15(14): [PMID: 37509272]
  38. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 36070624]
  39. Pac Symp Biocomput. 2021;26:285-296 [PMID: 33691025]
  40. Cells. 2019 Aug 30;8(9): [PMID: 31480350]
  41. IEEE Trans Neural Netw. 2009 Jan;20(1):61-80 [PMID: 19068426]
  42. Bioengineering (Basel). 2023 Sep 06;10(9): [PMID: 37760148]
  43. Brief Bioinform. 2021 Mar 22;22(2):1902-1917 [PMID: 32363401]
  44. BMC Bioinformatics. 2022 Sep 27;23(1):394 [PMID: 36167504]
  45. Cells. 2019 Aug 26;8(9): [PMID: 31455028]
  46. IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):3117-3127 [PMID: 37379184]
  47. Comput Struct Biotechnol J. 2022 Aug 24;20:4600-4617 [PMID: 36090815]
  48. BMC Bioinformatics. 2022 Sep 19;23(1):382 [PMID: 36123643]
  49. Front Genet. 2023 Jan 09;13:1103092 [PMID: 36699450]
  50. IEEE Trans Med Imaging. 2023 Nov;42(11):3179-3193 [PMID: 37027573]
  51. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1731-1734 [PMID: 34891621]
  52. Comput Biol Med. 2022 Oct;149:106079 [PMID: 36108413]
  53. Bioinformatics. 2022 Jun 24;38(Suppl 1):i84-i91 [PMID: 35758812]
  54. Front Microbiol. 2023 Apr 26;14:1147778 [PMID: 37180267]
  55. Nat Biomed Eng. 2022 Dec;6(12):1435-1448 [PMID: 36357512]
  56. Lancet Digit Health. 2022 Nov;4(11):e787-e795 [PMID: 36307192]
  57. IEEE Trans Neural Netw. 2009 Mar;20(3):498-511 [PMID: 19193509]
  58. BMC Bioinformatics. 2023 May 15;24(1):198 [PMID: 37189058]
  59. Int J Radiat Oncol Biol Phys. 2023 Jul 1;116(3):676-689 [PMID: 36641040]
  60. Int J Mol Sci. 2022 Nov 11;23(22): [PMID: 36430395]
  61. BMC Bioinformatics. 2021 Sep 10;22(1):434 [PMID: 34507532]
  62. Diagn Interv Imaging. 2023 Apr;104(4):167-177 [PMID: 36414506]
  63. Sci Rep. 2023 Mar 31;13(1):5279 [PMID: 37002296]
  64. Nat Biomed Eng. 2022 Aug 18;: [PMID: 35982331]
  65. BMC Bioinformatics. 2022 Jan 4;23(1):11 [PMID: 34983363]
  66. Med Image Anal. 2022 Jan;75:102264 [PMID: 34781160]
  67. Front Bioinform. 2023 Aug 02;3:1164482 [PMID: 37600972]
  68. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34571537]
  69. IEEE Trans Med Imaging. 2023 Jun;42(6):1656-1667 [PMID: 37018703]
  70. IEEE J Biomed Health Inform. 2023 Jul 27;PP: [PMID: 37498762]
  71. Bioinformatics. 2023 Aug 1;39(8): [PMID: 37555809]
  72. Comput Biol Med. 2023 Sep;163:107117 [PMID: 37329617]
  73. Sci Rep. 2023 Sep 11;13(1):14938 [PMID: 37697022]
  74. Front Cell Dev Biol. 2021 Oct 05;9:753221 [PMID: 34676219]
  75. Brief Funct Genomics. 2023 Nov 10;22(5):453-462 [PMID: 37078739]
  76. Front Genet. 2021 Jul 29;12:690049 [PMID: 34394185]
  77. Phys Med Biol. 2021 Oct 21;66(21): [PMID: 34592726]
  78. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 35849101]
  79. Comput Biol Chem. 2023 Aug;105:107900 [PMID: 37285654]
  80. Bioinformatics. 2022 Sep 30;38(19):4546-4553 [PMID: 35997568]
  81. Int J Mol Sci. 2022 Oct 29;23(21): [PMID: 36361945]
  82. J Pathol Inform. 2022 Nov 19;13:100158 [PMID: 36605110]
  83. Mol Genet Genomics. 2020 Sep;295(5):1197-1209 [PMID: 32500265]
  84. Neural Netw. 2024 May;173:106207 [PMID: 38442651]
  85. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34727569]
  86. Med Image Anal. 2022 Aug;80:102486 [PMID: 35640384]
  87. Comput Biol Med. 2023 Sep;164:107265 [PMID: 37531860]
  88. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33778850]
  89. NPJ Precis Oncol. 2022 Jun 23;6(1):45 [PMID: 35739342]
  90. Brief Funct Genomics. 2024 Jul 19;23(4):384-394 [PMID: 37738503]
  91. BMC Cancer. 2022 Nov 24;22(1):1211 [PMID: 36434556]
  92. Bioinformatics. 2023 Feb 3;39(2): [PMID: 36645245]
  93. Insights Imaging. 2021 Sep 27;12(1):138 [PMID: 34580788]
  94. Oncotarget. 2022 May 19;13:695-706 [PMID: 35601606]
  95. Phys Med Biol. 2023 Mar 09;68(6): [PMID: 36731143]
  96. Sensors (Basel). 2021 Mar 10;21(6): [PMID: 33801894]
  97. Bioinformatics. 2020 Aug 15;36(16):4458-4465 [PMID: 32221609]
  98. Front Genet. 2022 May 13;13:884028 [PMID: 35646077]
  99. Methods. 2023 Sep;217:1-9 [PMID: 37321525]
  100. Comput Med Imaging Graph. 2021 Mar;88:101820 [PMID: 33453648]
  101. Front Oncol. 2022 Jul 13;12:868186 [PMID: 35936706]
  102. Bioinformatics. 2022 Jan 3;38(2):461-468 [PMID: 34559177]
  103. FEBS J. 2021 Mar;288(6):1859-1870 [PMID: 32976679]
  104. Cancers (Basel). 2021 Jun 24;13(13): [PMID: 34202427]
  105. J Comput Biol. 2017 Apr;24(4):340-356 [PMID: 27681505]
  106. Med Image Anal. 2023 Dec;90:102936 [PMID: 37660482]
  107. Cytometry A. 2021 Dec;99(12):1176-1186 [PMID: 34089228]
  108. Bioinformatics. 2022 Sep 16;38(Suppl_2):ii106-ii112 [PMID: 36124788]

Grants

  1. R01 LM013138/NLM NIH HHS
  2. R01LM013138/NIH HHS

Word Cloud

Created with Highcharts 10.0.0researchcanceroncologygraphdeeplearningGNNmultimodalGraphNeuralNetworksGNNsgraphicalnetworkNext-generationneedstakefulladvantagestructuredinformationdatatypesrangingmolecularstructuresspatiallyresolvedimagingdigitalpathologybiologicalnetworksknowledgegraphsefficientlycombinestructurerepresentationshighpredictiveperformanceespeciallylargedatasetsreviewarticlesurveylandscaperecent2020-presentapplicationscontextdelineatesixcurrentlypredominantareasidentifypromisingdirectionsfuturecomparemodels"non-structured"deviseguidelinesresearchersphysician-scientistsaskingquestionwhetheradoptmethodologypipelinesCancerOncologyResearch:EmergingFutureTrendsBayesianneuralmodel

Similar Articles

Cited By