Multispectral Remote Sensing Data Application in Modelling Non-Extensive Tsallis Thermodynamics for Mountain Forests in Northern Mongolia.

Robert Sandlersky, Nataliya Petrzhik, Tushigma Jargalsaikhan, Ivan Shironiya
Author Information
  1. Robert Sandlersky: V.N. Sukachev Laboratory of Biogeocenology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia. ORCID
  2. Nataliya Petrzhik: V.N. Sukachev Laboratory of Biogeocenology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
  3. Tushigma Jargalsaikhan: Laboratory of Forest Phytocoenology, Botanic Garden and Research Institute Mongolian Academy of Sciences, Peace Avenue 54a, Bayanzurkh District, Ulaanbaatar 13330, Mongolia.
  4. Ivan Shironiya: V.N. Sukachev Laboratory of Biogeocenology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia. ORCID

Abstract

The imminent threat of Mongolian montane forests facing extinction due to climate change emphasizes the pressing need to study these ecosystems for sustainable development. Leveraging multispectral remote sensing data from Landsat 8 OLI TIRS (2013-2021), we apply Tsallis non-extensive thermodynamics to assess spatiotemporal fluctuations in the absorbed solar energy budget (exergy, bound energy, internal energy increment) and organizational parameters (entropy, information increment, q-index) within the mountain taiga-meadow landscape. Using the principal component method, we discern three functional subsystems: evapotranspiration, heat dissipation, and a structural-informational component linked to bioproductivity. The interplay among these subsystems delineates distinct landscape cover states. By categorizing ecosystems (pixels) based on these processes, discrete states and transitional areas (boundaries and potential disturbances) emerge. Examining the temporal dynamics of ecosystems (pixels) within this three-dimensional coordinate space facilitates predictions of future landscape states. Our findings indicate that northern Mongolian montane forests utilize a smaller proportion of received energy for productivity compared to alpine meadows, which results in their heightened vulnerability to climate change. This approach deepens our understanding of ecosystem functioning and landscape dynamics, serving as a basis for evaluating their resilience amid ongoing climate challenges.

Keywords

References

  1. Phys Life Rev. 2010 Dec;7(4):424-60 [PMID: 20970394]
  2. Entropy (Basel). 2020 Mar 26;22(4): [PMID: 33286154]
  3. Biochim Biophys Acta Bioenerg. 2021 Jan 1;1862(1):148303 [PMID: 32926862]
  4. Entropy (Basel). 2020 Jul 27;22(8): [PMID: 33286591]
  5. Proc Natl Acad Sci U S A. 1922 Jun;8(6):147-51 [PMID: 16576642]
  6. Sci Rep. 2020 Oct 27;10(1):18321 [PMID: 33110133]
  7. Entropy (Basel). 2020 Oct 28;22(11): [PMID: 33286994]
  8. Entropy (Basel). 2020 Oct 06;22(10): [PMID: 33286902]
  9. Sci Rep. 2022 Jul 22;12(1):12565 [PMID: 35869102]
  10. Glob Chang Biol. 2020 Jul;26(7):4013-4027 [PMID: 32301569]
  11. Entropy (Basel). 2021 Oct 28;23(11): [PMID: 34828118]

Grants

  1. 22-27-00781/Russian Science Foundation
  2. 76/Basic Research Program at the National Research University Higher School of Economics

Word Cloud

Created with Highcharts 10.0.0energylandscapeclimateecosystemsTsallisstatesMongolianmontaneforestschangeLandsat8non-extensivethermodynamicsexergyincrementparametersq-indexwithincomponentpixelsdynamicsecosystemimminentthreatfacingextinctiondueemphasizespressingneedstudysustainabledevelopmentLeveragingmultispectralremotesensingdataOLITIRS2013-2021applyassessspatiotemporalfluctuationsabsorbedsolarbudgetboundinternalorganizationalentropyinformationmountaintaiga-meadowUsingprincipalmethoddiscernthreefunctionalsubsystems:evapotranspirationheatdissipationstructural-informationallinkedbioproductivityinterplayamongsubsystemsdelineatesdistinctcovercategorizingbasedprocessesdiscretetransitionalareasboundariespotentialdisturbancesemergeExaminingtemporalthree-dimensionalcoordinatespacefacilitatespredictionsfuturefindingsindicatenorthernutilizesmallerproportionreceivedproductivitycomparedalpinemeadowsresultsheightenedvulnerabilityapproachdeepensunderstandingfunctioningservingbasisevaluatingresilienceamidongoingchallengesMultispectralRemoteSensingDataApplicationModellingNon-ExtensiveThermodynamicsMountainForestsNorthernMongoliaordercontrol

Similar Articles

Cited By