Genetic Diversity and Phylogenetic Analysis of in Northwest China's Deserts Based on the Resequencing of the Genome.

Mengmeng Wei, Jingdian Liu, Suoming Wang, Xiyong Wang, Haisuang Liu, Qing Ma, Jiancheng Wang, Wei Shi
Author Information
  1. Mengmeng Wei: State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
  2. Jingdian Liu: State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China. ORCID
  3. Suoming Wang: State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
  4. Xiyong Wang: State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
  5. Haisuang Liu: State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
  6. Qing Ma: State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
  7. Jiancheng Wang: State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.
  8. Wei Shi: State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China.

Abstract

In order to study the genetics of local adaptation in all main deserts of northwest China, whole genomes of 169 individuals were resequenced, which covers 20 populations of (Zygophyllales: Zygophylaceae). We describe more than 15 million single nucleotide polymorphisms and numerous InDels. The expected heterozygosity and PIC values associated with local adaptation varied significantly across biogeographic regions. Variation in environmental factors contributes largely to the population genetic structure of . Bayesian analysis performed with STRUCTURE defined four genetic clusters, while the results of principle component analysis were similar. Our results shows that the Qaidam Desert group appears to be diverging into two branches characterized by significant geographic separation and gene flow with two neighboring deserts. Geological data assume that it is possible that the Taklamakan Desert was the original distribution site, and could have migrated later on and expanded within other desert areas. The above findings provide insights into the processes involved in biogeography, phylogeny, and differentiation within the northwest deserts of China.

Keywords

References

  1. Immunogenetics. 2018 Apr;70(4):223-236 [PMID: 28924718]
  2. Plant Cell. 2021 Mar 22;33(1):11-26 [PMID: 33751096]
  3. PLoS One. 2013 Jun 06;8(6):e62692 [PMID: 23762227]
  4. Kidney Int. 2004 Oct;66(4):1613-21 [PMID: 15458458]
  5. New Phytol. 2015 Feb;205(3):1106-1116 [PMID: 25354036]
  6. Front Genet. 2021 Apr 30;12:656061 [PMID: 33995487]
  7. Plant J. 2004 Sep;39(6):960-8 [PMID: 15341637]
  8. Nat Rev Genet. 2013 Mar;14(3):179-90 [PMID: 23381120]
  9. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  10. Genome Biol. 2004;5(2):R7 [PMID: 14759257]
  11. J Cell Biol. 1992 Nov;119(3):493-501 [PMID: 1400587]
  12. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  13. Annu Rev Psychol. 2023 Jan 18;74:577-596 [PMID: 35973734]
  14. Science. 2001 Nov 23;294(5547):1671-7 [PMID: 11721044]
  15. Annu Rev Plant Biol. 2003;54:357-74 [PMID: 14502995]
  16. Front Plant Sci. 2023 Jun 12;14:1172816 [PMID: 37377815]
  17. Science. 2001 Apr 27;292(5517):673-9 [PMID: 11326089]
  18. Front Plant Sci. 2021 Sep 24;12:723622 [PMID: 34630471]
  19. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  20. Nat Genet. 2015 May;47(5):435-44 [PMID: 25807286]
  21. Mol Phylogenet Evol. 2013 Feb;66(2):526-38 [PMID: 22197804]
  22. New Phytol. 2019 Jun;222(4):1690-1704 [PMID: 30664232]
  23. Plant J. 2013 Apr;74(1):174-83 [PMID: 23289725]
  24. Nat Protoc. 2006;1(5):2320-5 [PMID: 17406474]
  25. Rice (N Y). 2023 Feb 28;16(1):12 [PMID: 36853402]
  26. Annu Rev Anim Biosci. 2023 Oct 20;: [PMID: 37863091]
  27. Nat Plants. 2015 Nov 02;1:15165 [PMID: 27251536]
  28. Curr Protoc. 2023 Mar;3(3):e697 [PMID: 36943033]
  29. Plant J. 2015 Nov;84(4):733-46 [PMID: 26408103]
  30. Bioinformatics. 2003 Oct;19 Suppl 2:ii215-25 [PMID: 14534192]
  31. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  32. Sci Rep. 2017 Feb 06;7:41845 [PMID: 28165502]
  33. Bioinformatics. 2019 May 15;35(10):1786-1788 [PMID: 30321304]
  34. Trends Ecol Evol. 2000 Feb;15(2):70-76 [PMID: 10652559]
  35. Nat Commun. 2013;4:2320 [PMID: 23982223]
  36. Am J Hum Genet. 2011 Jan 7;88(1):76-82 [PMID: 21167468]
  37. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  38. Conserv Biol. 2020 Oct;34(5):1142-1151 [PMID: 31994789]
  39. J Integr Plant Biol. 2023 May;65(5):1183-1203 [PMID: 36772845]
  40. Mol Ecol. 2013 Dec;22(23):5908-21 [PMID: 24118210]
  41. Nat Biotechnol. 2017 Oct;35(10):969-976 [PMID: 28922347]
  42. Chromosome Res. 2007;15(1):51-66 [PMID: 17295126]
  43. Mol Ecol. 2008 Jan;17(1):431-49 [PMID: 17908213]
  44. Front Genet. 2022 Dec 08;13:1026919 [PMID: 36568371]
  45. Science. 2020 Apr 17;368(6488):266-269 [PMID: 32299946]
  46. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  47. New Phytol. 2024 Jan;241(2):845-860 [PMID: 37920100]
  48. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  49. Science. 2000 Jan 14;287(5451):306-8 [PMID: 10634785]
  50. Gene. 2020 Oct 5;757:144919 [PMID: 32603771]
  51. Nucleic Acids Res. 2000 Jan 1;28(1):33-6 [PMID: 10592175]
  52. Front Genet. 2014 Feb 12;5:4 [PMID: 24575120]
  53. IUBMB Life. 2005 Nov;57(11):745-7 [PMID: 16511967]
  54. J Clin Microbiol. 2016 Apr;54(4):851-9 [PMID: 26818666]
  55. New Phytol. 2019 Jan;221(1):565-576 [PMID: 30030969]
  56. Nature. 2001 May 3;411(6833):62-6 [PMID: 11333976]
  57. Front Plant Sci. 2020 Nov 12;11:577536 [PMID: 33281844]
  58. PeerJ. 2018 Jun 13;6:e4929 [PMID: 29915689]
  59. Gigascience. 2020 Feb 1;9(2): [PMID: 32052832]
  60. Nat Commun. 2013;4:2612 [PMID: 24113773]
  61. Science. 2010 Dec 24;330(6012):1820-4 [PMID: 21205668]
  62. Mol Phylogenet Evol. 2008 Jun;47(3):932-49 [PMID: 18407526]
  63. Mol Ecol. 2006 Dec;15(14):4261-93 [PMID: 17107465]
  64. Front Plant Sci. 2023 Oct 12;14:1272362 [PMID: 37900752]

Grants

  1. 32170386/Distribution pattern of population variation in the desert plant Zygophyllum loczyi and the mechanisms responsible for its formation
  2. 2021-XBQNXZ-010/Mechanisms of adaptive differentiation in the desert plant Zygophyllum loczyi resolved based on simplified genome sequencing

MeSH Term

Humans
Phylogeny
Zygophyllum
Genetic Variation
Bayes Theorem
China

Word Cloud

Created with Highcharts 10.0.0desertsChinageneticlocaladaptationnorthwestanalysisresultsDeserttwowithinphylogenyorderstudygeneticsmainwholegenomes169individualsresequencedcovers20populationsZygophyllales:Zygophylaceaedescribe15millionsinglenucleotidepolymorphismsnumerousInDelsexpectedheterozygosityPICvaluesassociatedvariedsignificantlyacrossbiogeographicregionsVariationenvironmentalfactorscontributeslargelypopulationstructureBayesianperformedSTRUCTUREdefinedfourclustersprinciplecomponentsimilarshowsQaidamgroupappearsdivergingbranchescharacterizedsignificantgeographicseparationgeneflowneighboringGeologicaldataassumepossibleTaklamakanoriginaldistributionsitemigratedlaterexpandeddesertareasfindingsprovideinsightsprocessesinvolvedbiogeographydifferentiationGeneticDiversityPhylogeneticAnalysisNorthwestChina'sDesertsBasedResequencingGenomeZygophyllaceaeZygophyllumloczyidiversityresequencing

Similar Articles

Cited By (1)