The Dynamics of OXA-23 β-Lactamase from .

Roberto Arrigoni, Andrea Ballini, Luigi Santacroce, Luigi Leonardo Palese
Author Information
  1. Roberto Arrigoni: CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy. ORCID
  2. Andrea Ballini: Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy. ORCID
  3. Luigi Santacroce: Interdisciplinary Department of Medicine (DIM), University of Bari 'Aldo Moro', 70124 Bari, Italy. ORCID
  4. Luigi Leonardo Palese: Department of Translational Biomedicine and Neurosciences-(DiBraiN), University of Bari 'Aldo Moro', 70124 Bari, Italy. ORCID

Abstract

Antibiotic resistance is a pressing topic, which also affects β-lactam antibiotic molecules. Until a few years ago, it was considered no more than an interesting species from an academic point of view, is today one of the most serious threats to public health, so much so that it has been declared one of the species for which the search for new antibiotics, or new ways to avoid its resistance, is an absolute priority according to WHO. Although there are several molecular mechanisms that are responsible for the extreme resistance of to antibiotics, a class D β-lactamase is the main cause for the clinical concern of this bacterial species. In this work, we analyzed the OXA-23 protein via molecular dynamics. The results obtained show that this protein is able to assume different conformations, especially in some regions around the active site. Part of the OXA-23 protein has considerable conformational motility, while the rest is less mobile. The importance of these observations for understanding the functioning mechanism of the enzyme as well as for designing new effective molecules for the treatment of is discussed.

Keywords

References

  1. Antimicrob Agents Chemother. 2019 Jan 29;63(2): [PMID: 30530607]
  2. Clin Microbiol Rev. 2008 Jul;21(3):538-82 [PMID: 18625687]
  3. Biophys Chem. 2015 Jan;196:1-9 [PMID: 25237718]
  4. Antimicrob Agents Chemother. 2013 Oct;57(10):4848-55 [PMID: 23877677]
  5. Chem Biol. 2009 May 29;16(5):540-7 [PMID: 19477418]
  6. mBio. 2022 Jun 28;13(3):e0036722 [PMID: 35420470]
  7. Antibiotics (Basel). 2022 Oct 18;11(10): [PMID: 36290089]
  8. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321-31 [PMID: 6109327]
  9. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5354-9 [PMID: 17374723]
  10. Med Mal Infect. 2012 Sep;42(9):381-92 [PMID: 22975074]
  11. J Comput Chem. 2011 Jul 30;32(10):2319-27 [PMID: 21500218]
  12. Biochemistry. 2015 Mar 17;54(10):1976-87 [PMID: 25710192]
  13. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14280-5 [PMID: 11724923]
  14. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  15. J Infect Public Health. 2021 Dec;14(12):1750-1766 [PMID: 34756812]
  16. Lancet. 2013 May 11;381(9878):1606-9 [PMID: 23489756]
  17. Comput Biol Chem. 2018 Apr;73:57-64 [PMID: 29428276]
  18. J Appl Microbiol. 2018 Aug;125(2):308-312 [PMID: 29807389]
  19. J Chem Theory Comput. 2016 Jan 12;12(1):405-13 [PMID: 26631602]
  20. Arch Intern Med. 1991 May;151(5):886-95 [PMID: 2025137]
  21. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  22. Pathogens. 2021 Oct 12;10(10): [PMID: 34684258]
  23. Antimicrob Agents Chemother. 1995 Jun;39(6):1211-33 [PMID: 7574506]
  24. Nature. 2020 Sep;585(7825):357-362 [PMID: 32939066]
  25. Nucleic Acids Res. 2021 Jan 8;49(D1):D437-D451 [PMID: 33211854]
  26. Clin Microbiol Rev. 2020 May 13;33(3): [PMID: 32404435]
  27. J Chem Phys. 2020 Jul 28;153(4):044130 [PMID: 32752662]
  28. Int J Mol Sci. 2015 Apr 29;16(5):9654-92 [PMID: 25938965]
  29. Infect Drug Resist. 2018 Oct 10;11:1645-1658 [PMID: 30349322]
  30. Rev Infect Dis. 1988 Jul-Aug;10(4):677-8 [PMID: 3055168]
  31. Antimicrob Agents Chemother. 2014;58(4):2135-43 [PMID: 24468777]
  32. J Phys Chem B. 2015 Dec 24;119(51):15568-73 [PMID: 26619349]
  33. J Comput Chem. 2009 Jul 30;30(10):1545-614 [PMID: 19444816]
  34. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  35. J Mol Graph Model. 1999 Jun-Aug;17(3-4):238-44 [PMID: 10736782]
  36. Molecules. 2021 Mar 05;26(5): [PMID: 33807773]
  37. J Mol Biol. 2019 Aug 23;431(18):3472-3500 [PMID: 30959050]
  38. J Antimicrob Chemother. 2021 Mar 12;76(4):836-864 [PMID: 33382875]
  39. Bull World Health Organ. 2001;79(8):780-90 [PMID: 11545337]
  40. Bull World Health Organ. 2015 Dec 1;93(12):867-76 [PMID: 26668439]
  41. Nat Biotechnol. 2008 Mar;26(3):303-4 [PMID: 18327243]
  42. J Comput Chem. 2010 May;31(7):1561-3 [PMID: 20017124]
  43. Biochim Biophys Acta. 2013 Dec;1834(12):2486-93 [PMID: 24016775]
  44. Chem Biol. 2013 Sep 19;20(9):1107-15 [PMID: 24012371]
  45. Biochem J. 2014 Jul 15;461(2):305-14 [PMID: 24779955]
  46. Future Microbiol. 2021 Nov;16:1261-1266 [PMID: 34674551]
  47. Antimicrob Agents Chemother. 2018 Sep 24;62(10): [PMID: 30061284]
  48. Biochem J. 2018 Jan 11;475(1):273-288 [PMID: 29229762]
  49. Biochem Biophys Res Commun. 2011 Jan 7;404(1):438-42 [PMID: 21138729]
  50. Biomolecules. 2020 May 06;10(5): [PMID: 32384624]
  51. Nat Methods. 2017 Jan;14(1):71-73 [PMID: 27819658]
  52. IUBMB Life. 2011 Dec;63(12):1048-54 [PMID: 22006724]
  53. Science. 1944 Jun 2;99(2579):452-3 [PMID: 17798398]
  54. Acta Crystallogr A. 2005 Jul;61(Pt 4):478-80 [PMID: 15973002]

MeSH Term

Acinetobacter baumannii
Anti-Bacterial Agents
beta-Lactamases
Molecular Dynamics Simulation
Microbial Sensitivity Tests
Bacterial Proteins

Chemicals

beta-lactamase OXA-23
Anti-Bacterial Agents
beta-Lactamases
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0resistanceproteinspeciesnewantibioticsmolecularOXA-23moleculesonebacterialdynamicsAntibioticpressingtopicalsoaffectsβ-lactamantibioticyearsagoconsideredinterestingacademicpointviewtodayseriousthreatspublichealthmuchdeclaredsearchwaysavoidabsolutepriorityaccordingWHOAlthoughseveralmechanismsresponsibleextremeclassDβ-lactamasemaincauseclinicalconcernworkanalyzedviaresultsobtainedshowableassumedifferentconformationsespeciallyregionsaroundactivesitePartconsiderableconformationalmotilityrestlessmobileimportanceobservationsunderstandingfunctioningmechanismenzymewelldesigningeffectivetreatmentdiscussedDynamicsβ-LactamaseAcinetobacterbaumanniianti-bacterialagentsproteinscarbapenem-resistantEnterobacteriaceaedrughumansmicrobialsimulationstructureβ-lactamases

Similar Articles

Cited By