Risk stratifier for sudden cardiac death beyond the left ventricular ejection fraction in Chagas cardiomyopathy.

Roberto Coury Pedrosa, João Paulo do Vale Madeiro, Alex C Alberto, Gabriel A Limeira, Basílio de Bragança Pereira, Emília Matos do Nascimento, Fernando Soares Schlindwein, Gullien André Ng
Author Information
  1. Roberto Coury Pedrosa: Cardiology Department, Clementino Fraga Filho University Hospital/Edson Saad Heart Institute-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. ORCID
  2. João Paulo do Vale Madeiro: Department of Computing Science-Federal University of Ceará, Fortaleza, Brazil.
  3. Alex C Alberto: Federal Centre for Technological Education Celso Suckow da Fonseca, Rio de Janeiro, Brazil.
  4. Gabriel A Limeira: Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
  5. Basílio de Bragança Pereira: Federal University of Rio de Janeiro, School of Medicine and Edson Saad Heart Institute, Rio de Janeiro, Brazil.
  6. Emília Matos do Nascimento: State University of Rio de Janeiro, Rio de Janeiro, Brazil.
  7. Fernando Soares Schlindwein: University of Leicester, School of Engineering, Leicester, UK.
  8. Gullien André Ng: Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.

Abstract

BACKGROUND: Sudden cardiac death (SCD) risk markers are needed in Chagas cardiomyopathy (CC). Action potential duration restitution (APDR) dynamics is capable of extracting information on cardiac regional heterogeneity. This study intends to develop a patient-specific variables-based algorithm to predict SCD in the low-intermediate subgroups of the Rassi risk score.
METHODS: Cross-sectional study of patients who underwent 24-h Holter for research purposes between January 1992 and February 2017. From 4-h ECG segment, RR series were generated and APDR dynamics metrics were calculated. Classification tree and sensitivity analysis were applied. As outcomes, SCD, SCD-free and non-cardiovascular death and 34 variables were included.
RESULTS: Two hundred twenty-one (129 in the group SCD-free, 80 in the SCD group and 12 non-cardiovascular death group) were analyzed. In the groups with and without SCD (209 patients), the median age was 66 years, 52% were female, the cardiac involvement was mild to moderate in 72% with a Rassi point median of 8 (IQ: 3 to 11). The SCD group had more ventricular remodeling and more ventricular electrical instability. The occurrence of a %beats QTend/TendQ ratio > 1 (AUC, 0.96 (95% CI 0.89-0.98) present in more than 56.7% of the 4-h ECG segments was sufficient to identify patients of the SCD subgroup. Variables representing different stages of CC were also relevant in the model.
CONCLUSION: It is possible to use APDR dynamics as an adjuvant in the SCD risk assessment in a subgroup of patients with a high risk of SCD and a very low risk of non-CV death with high power of discrimination.

Keywords

References

  1. Nunes MCP, Beaton A, Acquatella H, et al. American Heart Association Rheumatic Fever, Endocarditis and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Stroke Council. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation. 2018;138:e169-e209. doi:10.1161/CIR.0000000000000599
  2. WHO. Chagas disease (American trypanosomiasis). World Health Organization Technical Report Series. 2017: 14 November, 2019 http://www.who.int/mediacentre/factsheets/fs340/en/
  3. Rassi A Jr, Rassi A, Little WC, et al. Scanavacca MI Development and validation of a risk score for predicting death in Chagas’ heart disease. N Engl J Med. 2006;355:799-808. doi:10.1056/NEJMoa053241
  4. Dias JC, Ramos AN Jr, Gontijo ED, et al. 2nd Brazilian Consensus on Chagas disease. Rev Soc Bras Med Trop. 2016;49:3-60. doi:10.1590/0037-8682-0505-2016
  5. De Souza ACJ, Salles G, Hasslocher-Moreno AM, et al. Development of a risk score to predict sudden death in patients with Chagas heart disease. Int J Cardiol. 2015;187:700-704. doi:10.1016/j.ijcard.2015.03.372
  6. Ng GA, Mistry A, Schlindwein FS, Nicolson WB. LifeMap: towards the development of a new technology in sudden cardiac death risk stratification for clinical use. Europace. 2018;20:162-170. doi:10.1093/europace/euy080
  7. Nicolson WB, Smith MI, Vali Z, Samani NJ, Ng GA. Application of two novel electrical restitution-based ECG markers of ventricular arrhythmia to patients with non-ischemic cardiomyopathy. Pacing Clin Electrophysiol. 2021;44:284-292. doi:10.1111/pace.14143
  8. Cavalcante CHL, Primo PEO, Sales CAF, et al. Sudden cardiac death multiparametric classification system for Chagas heart disease's patients based on clinical data and 24-hours ECG monitoring. Math Biosci Eng. 2023;20:9159-9178. doi:10.3934/mbe.2023402
  9. Ministério da Saúde. Secretaria Executiva. DATASUS. Informações de Saúde. Accessed in Feb 2017 Disponível em: http://www2.datasus.gov.br/DATASUS/index.php?area=02
  10. SAMU database. http://www.saude.gov.br/samu
  11. Hinkle LE Jr, Thaler HT. Clinical classification of cardiac deaths. Circulation. 1982;65:457-464. doi:10.1161/01.cir.65.3.457
  12. Madeiro JPV, Lobo Marques JA, Han T, Pedrosa RC. Evaluation of Mathematical Models for QRS Feature Extraction and QRS Morphology Classification in ECG Signals. Measurement. 2020;156:377-389. doi:10.1016/j.measurement.2020.107580
  13. Madeiro JPV, Cortez PC, Salinet JL, jr, et al. (2019) Classical and Modern Features for Interpretation of ECG Signal. In: Madeiro JPV, Cortez PC, Monteiro Filho JMS, Roncalli A, Brayner A, eds. Developments and Applications for ECG Signal Processing: Modelling, Segmentation and Pattern Recognition. 1st ed. Academic Press; 2019:1-28.
  14. Amoni M, Claus P, Dries E, et al. Willems R Discrete sites of frequent premature ventricular complexes cluster within the infarct border zone and coincide with high frequency of delayed afterdepolarizations under adrenergic stimulation. Heart Rhythm. 2021;18:1976-1987. doi:10.1016/j.hrthm.2021.07.067
  15. Fossa AA, Zhou M. Assessing QT prolongation and electrocardiography restitution using a beat-to-beat method. Cardiol J. 2010;17:230-243. PMID: 20535712.
  16. R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, https://www.R-project.org/URL
  17. Portela LF, Mesquita MB, Giraldes JM, et al. Socio-epidemiological factors and comorbidities associated with Chagas disease manifestations in two urban reference health care centres in Rio de Janeiro. Brazil Trans R Soc Trop Med Hyg. 2023;117:102-110. doi:10.1093/trstmh/trac068
  18. Marcolino MS, Palhares DM, Ferreira LR, Ribeiro AL. Electrocardiogram and Chagas disease a large population database of primary care patients. Glob Heart. 2015;10:167-172. doi:10.1016/j.gheart.2015.07.001
  19. Alberto AC, Pedrosa RC, Zarzoso V, Nadal J. Association between circadian Holter ECG changes and sudden cardiac death in patients with Chagas heart disease. Physiol Meas. 2020;41:1-10. doi.org/10.1088/1361-6579/ab6ebc
  20. Pak HN, Hong SJ, Hwang GS, et al. Spatial dispersion of action potential duration restitution kinetics is associated with induction of ventricular tachycardia/fibrillation in humans. J Cardiovasc Electrophysiol. 2004;15:1357-1363. doi:10.1046/j.1540-8167.2004.03569.x
  21. Dobson CP, Kim A, Haigney M. QT Variability Index. Prog Cardiovasc Dis. 2013;56:186-194 doi:10.1016/j.pcad.2013.07.004
  22. Benchimol-Barbosa PR. Nonlinear mathematical model for predicting long term cardiac remodeling in Chagas' heart disease: introducing the concepts of ‘limiting cardiac function’ and 'cardiac function deterioration period. Int J Cardiol. 2010;145:219-221. doi:10.1016/j.ijcard.2009.05.010
  23. Osaka T, Yokoyama E, Hasebe H, Kodama I. Effects of chronic amiodarone on the electrical restitution in the human ventricle with reference to its antiarrhythmic efficacy. J Cardiovasc Electrophysiol. 2011;22:669-676. doi:10.1111/j.1540-8167.2010.01990.x
  24. Pedrosa RC, Cançado JR, Decache W. A longitudinal electrocardiogram study of Chagas' disease from the acute phase. Rev Soc Bras Med Trop. 1993;26:163-174. doi:10.1590/s0037-86821993000300006
  25. Peixoto GPL, Martinelli Filho M, Siqueira SF, et al. Predictors of death in chronic Chagas cardiomyopathy patients with pacemaker. Int J Cardiol. 2018;250:260-265. doi:10.1016/j.ijcard.2017.10.031
  26. Rassi A Jr, Rassi SG, Rassi A. Sudden Death in Chagas’ Disease. Arq Bras Cardiol. 2001;76:86-96. doi:10.1590/s0066-782X2001000100008
  27. Leite LR, Fenelon G, Simoe. Clinical usefulness of electrophysiologic testing in patients with ventricular tachycardia and chronic chagasic cardiomyopathy treated with amiodarone or sotalol. J Cardiovasc Electrophysiol. 2003;14:567-573. doi:10.1046/j.1540-8167.2003.02278.x

Grants

  1. BP3-0139-00284.01.00/18/Ceará Foundation for Scientific and Technological Development Support-FUNCAP

MeSH Term

Humans
Aged
Stroke Volume
Ventricular Function, Left
Chagas Cardiomyopathy
Cross-Sectional Studies
Death, Sudden, Cardiac
Risk Factors
Risk Assessment
Defibrillators, Implantable

Word Cloud

Created with Highcharts 10.0.0SCDdeathcardiacriskpatientsgroupChagascardiomyopathyAPDRdynamicsventricularCCstudyRassi4-hECGSCD-freenon-cardiovascularmedian0subgrouphighsuddenBACKGROUND:SuddenmarkersneededActionpotentialdurationrestitutioncapableextractinginformationregionalheterogeneityintendsdeveloppatient-specificvariables-basedalgorithmpredictlow-intermediatesubgroupsscoreMETHODS:Cross-sectionalunderwent24-hHolterresearchpurposesJanuary1992February2017segmentRRseriesgeneratedmetricscalculatedClassificationtreesensitivityanalysisappliedoutcomes34variablesincludedRESULTS:Twohundredtwenty-one1298012analyzedgroupswithout209age66years52%femaleinvolvementmildmoderate72%point8IQ:311remodelingelectricalinstabilityoccurrence%beatsQTend/TendQratio > 1AUC9695%CI89-098present567%segmentssufficientidentifyVariablesrepresentingdifferentstagesalsorelevantmodelCONCLUSION:possibleuseadjuvantassessmentlownon-CVpowerdiscriminationRiskstratifierbeyondleftejectionfractionartificialintelligencechagasdiseaseimplantablecardioverterdefibrillators

Similar Articles

Cited By