Detection and classification of brain tumor using hybrid deep learning models.

Baiju Babu Vimala, Saravanan Srinivasan, Sandeep Kumar Mathivanan, Prabhu Jayagopal, Gemmachis Teshite Dalu
Author Information
  1. Baiju Babu Vimala: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
  2. Saravanan Srinivasan: Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India.
  3. Sandeep Kumar Mathivanan: School of Computing Science and Engineering, Galgotias University, Greater Noida, 203201, India.
  4. Mahalakshmi: Department of Mathematics, School of Applied Sciences, REVA University, Bangalore, Karnataka, India.
  5. Prabhu Jayagopal: School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
  6. Gemmachis Teshite Dalu: Department of Software Engineering, College of Computing and Informatics, Haramaya University, POB 138, Dire Dawa, Ethiopia. gemmachis.teshite@haramaya.edu.et.

Abstract

Accurately classifying brain tumor types is critical for timely diagnosis and potentially saving lives. Magnetic Resonance Imaging (MRI) is a widely used non-invasive method for obtaining high-contrast grayscale brain images, primarily for tumor diagnosis. The application of Convolutional Neural Networks (CNNs) in deep learning has revolutionized diagnostic systems, leading to significant advancements in medical imaging interpretation. In this study, we employ a transfer learning-based fine-tuning approach using EfficientNets to classify brain tumors into three categories: glioma, meningioma, and pituitary tumors. We utilize the publicly accessible CE-MRI Figshare dataset to fine-tune five pre-trained models from the EfficientNets family, ranging from EfficientNetB0 to EfficientNetB4. Our approach involves a two-step process to refine the pre-trained EfficientNet model. First, we initialize the model with weights from the ImageNet dataset. Then, we add additional layers, including top layers and a fully connected layer, to enable tumor classification. We conduct various tests to assess the robustness of our fine-tuned EfficientNets in comparison to other pre-trained models. Additionally, we analyze the impact of data augmentation on the model's test accuracy. To gain insights into the model's decision-making, we employ Grad-CAM visualization to examine the attention maps generated by the most optimal model, effectively highlighting tumor locations within brain images. Our results reveal that using EfficientNetB2 as the underlying framework yields significant performance improvements. Specifically, the overall test accuracy, precision, recall, and F1-score were found to be 99.06%, 98.73%, 99.13%, and 98.79%, respectively.

References

  1. Njeh, L. S., Ben Slima, M., Ben Hamida, A., Lehericy, S., & Galanaud, D. A computer aided diagnosis ‘CAD’ for brain glioma exploration. In 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, pp.243–248 (2014).
  2. Shil, S. K., Polly, F. P., Hossain, M. A., Ifthekhar, M. S., Uddin, M. N., & Jang, Y. M. An improved brain tumor detection and classification mechanism. In International Conference on Information and Communication Technology Convergence (ICTC), pp.54–57 (2017).
  3. Khalid, S., Khalil, T., & Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proc. Science and Information Conference, pp.372–378 (2014).
  4. Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. Learning transferable architectures for scalable image recognition. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.8697–8710 (2017).
  5. Shree, N. V. & Kumar, T. N. R. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Inf. 5(1), 23–30 (2018). [DOI: 10.1007/s40708-017-0075-5]
  6. Abiwinanda, N. Brain tumor classification using convolutional neural network. IFMBE Proc. World Congress Med. Phys. Biomed. Eng. 2018, 183–189. https://doi.org/10.1007/978-981-10-9035-6_33 (2018). [DOI: 10.1007/978-981-10-9035-6_33]
  7. Huang, Z. et al. Convolutional neural network based on complex networks for brain tumor image classification with a modified activation function. IEEE Access 8(1), 89281–89290 (2020). [DOI: 10.1109/ACCESS.2020.2993618]
  8. Díaz-Pernas, F. J., Martínez-Zarzuela, M., Anton-Rodríguez, M. & Gonzalez-Ortega, D. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare 9(2), 1–14 (2021). [DOI: 10.3390/healthcare9020153]
  9. Noreen, N. et al. A deep learning model based on concatenation approach for the diagnosis of brain tumor. IEEE Access 8(1), 55135–55144 (2020). [DOI: 10.1109/ACCESS.2020.2978629]
  10. Swati, Z. N. et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med. Imaging Graph. 75(1), 34–46 (2019). [PMID: 31150950]
  11. Cheng, J., Yang, W., Huang, M., Huang, W. & Jiang, J. Retrieval of brain tumors by adaptive spatial pooling and fisher vector representation. PLoS One 11(6), 1–15 (2016). [DOI: 10.1371/journal.pone.0157112]
  12. Amou, A., Mohamed, K. X., Kamhi, S. & Mouhafid, M. A novel MRI diagnosis method for brain tumor classification based on CNN and bayesian optimization. Healthcare 10(3), 1–21 (2022).
  13. Deepak, S. & Ameer, P. M. Brain tumor classification using deep CNN features via transfer learning. Brain Tumor Classif. Using Deep CNN Features Transfer Learn. 111(1), 1–19 (2019).
  14. Saikat, K. M. et al. Accurate brain tumor detection using deep convolutional neural network. Comput. Struct. Biotechnol. J. 20(1), 4733–4745 (2022).
  15. Allah, G., Ahmed, M., Sarhan, A. M. & Elshennawy, M. Classification of brain MRI tumor images based on deep learning PGGAN augmentation. Diagnostics 11(12), 1–20 (2021).
  16. Saleh, A., Sukaik, R., & Abu-Naser, S. S. Brain tumor classification using deep learning. In 2020 International Conference on Assistive and Rehabilitation Technologies, IEEE. https://doi.org/10.1109/iCareTech49914.2020.00032 (2020).
  17. Sharif, M. I., Khan, M. A., Alhussein, M., Aurangzeb, K. & Raza, M. A decision support system for multimodal brain tumor classification using deep learning. Complex Intell. Syst. 8(1), 3007–3020 (2020).
  18. Waghmare, V. K. & Kolekar, M. H. Brain tumor classification using deep learning. Internet Things Healthc. Technol. 73(1), 155–175 (2021). [DOI: 10.1007/978-981-15-4112-4_8]
  19. Khan, M. A. et al. Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists. Mach. Learn. Artif. Intell. Diagn. 10(8), 1–19 (2020).
  20. Deepak, S. & Ameer, P. M. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 111(2), 1–8 (2019).
  21. Kang, J., Ullah, Z. & Gwak, J. MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors 21(6), 1–21 (2021). [DOI: 10.3390/s21062222]
  22. Alqudah, A. M., Alquraan, H., Qasmieh, I. A., Alqudah, A. & Al-Sharu, W. Brain tumor classification using deep learning technique—a comparison between cropped, uncropped, and segmented lesion images with different. Int. J. Adv. Trends Comput. Sci. Eng. 8(6), 3684–3691 (2019). [DOI: 10.30534/ijatcse/2019/155862019]
  23. Rehman, A., Naz, S., Razzak, M. I., Akram, F. & Imran, M. A deep learning-based framework for automatic brain tumors classification using transfer learning. Circ. Syst. Signal Process. 39(1), 757–775 (2020). [DOI: 10.1007/s00034-019-01246-3]
  24. Sajjad, M. et al. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 30(1), 174–182 (2018).
  25. Díaz-Pernas, F. J., Martínez-Zarzuela, M., Antón-Rodríguez, M. & González-Ortega, D. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Feature Papers Artif. Intell. Med. 9(2), 1–14 (2021).
  26. Raza, A. et al. A hybrid deep learning-based approach for brain tumor classification. Intell. Data Sens. Process. Min. Commun. 11(7), 1–17 (2022).
  27. Ari, A. & Hanbay, D. Deep learning-based brain tumor classification and detection system. Turk. J. Electr. Eng. Comput. Sci. 26(5), 2275–2286 (2018). [DOI: 10.3906/elk-1801-8]
  28. Aamir, M. et al. A deep learning approach for brain tumor classification using MRI images. Comput. Electr. Eng. 101(1), 1–21 (2022).
  29. Kibriya, H., Amin, R., Alshehri, A. H., Masood, M. & Alshamrani, S. S. A novel and effective brain tumor classification model using deep feature fusion and famous machine learning classifiers. Comput. Intell. Neurosci. 7897669, 1–15 (2022). [DOI: 10.1155/2022/7897669]
  30. Cheng, J. Brain tumor dataset. Figshare. Dataset. Accessed: Sep. 19, 2019. [Online]. Available: https://doi.org/10.6084/m9.figshare.1512427.v5 .
  31. Razavian, A. S., Azizpour, H., Sullivan, J., Carlsson, S. CNN features off-the-shelf: An astounding baseline for recognition (2014). 2014' arXivpreprint arXiv:1403.6382 .
  32. Sarkar, A., Maniruzzaman, M. A. & Alahe, M. A. An effective and novel approach for brain tumor classification using AlexNet CNN feature extractor and multiple eminent machine learning classifiers in MRIs. J. Sensors Hindawi 1224619, 1–19 (2023).

MeSH Term

Humans
Deep Learning
Brain Neoplasms
Brain
Glioma
Meningeal Neoplasms

Word Cloud

Created with Highcharts 10.0.0braintumorusingEfficientNetspre-trainedmodelsmodeldiagnosisimagesdeeplearningsignificantemployapproachtumorsdatasetlayersclassificationmodel'stestaccuracy9998AccuratelyclassifyingtypescriticaltimelypotentiallysavinglivesMagneticResonanceImagingMRIwidelyusednon-invasivemethodobtaininghigh-contrastgrayscaleprimarilyapplicationConvolutionalNeuralNetworksCNNsrevolutionizeddiagnosticsystemsleadingadvancementsmedicalimaginginterpretationstudytransferlearning-basedfine-tuningclassifythreecategories:gliomameningiomapituitaryutilizepubliclyaccessibleCE-MRIFigsharefine-tunefivefamilyrangingEfficientNetB0EfficientNetB4involvestwo-stepprocessrefineEfficientNetFirstinitializeweightsImageNetaddadditionalincludingtopfullyconnectedlayerenableconductvarioustestsassessrobustnessfine-tunedcomparisonAdditionallyanalyzeimpactdataaugmentationgaininsightsdecision-makingGrad-CAMvisualizationexamineattentionmapsgeneratedoptimaleffectivelyhighlightinglocationswithinresultsrevealEfficientNetB2underlyingframeworkyieldsperformanceimprovementsSpecificallyoverallprecisionrecallF1-scorefound06%73%13%79%respectivelyDetectionhybrid

Similar Articles

Cited By (7)