Efficient and accurate numerical-projection of electromagnetic multipoles for scattering objects.

Wenfei Guo, Zizhe Cai, Zhongfei Xiong, Weijin Chen, Yuntian Chen
Author Information
  1. Wenfei Guo: School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
  2. Zizhe Cai: School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
  3. Zhongfei Xiong: School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China. xiongzf94@outlook.com.
  4. Weijin Chen: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore.
  5. Yuntian Chen: School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China. yuntian@hust.edu.cn.

Abstract

In this paper, we develop an efficient and accurate procedure of electromagnetic multipole decomposition by using the Lebedev and Gaussian quadrature methods to perform the numerical integration. Firstly, we briefly review the principles of multipole decomposition, highlighting two numerical projection methods including surface and volume integration. Secondly, we discuss the Lebedev and Gaussian quadrature methods, provide a detailed recipe to select the quadrature points and the corresponding weighting factor, and illustrate the integration accuracy and numerical efficiency (that is, with very few sampling points) using a unit sphere surface and regular tetrahedron. In the demonstrations of an isotropic dielectric nanosphere, a symmetric scatterer, and an anisotropic nanosphere, we perform multipole decomposition and validate our numerical projection procedure. The obtained results from our procedure are all consistent with those from Mie theory, symmetry constraints, and finite element simulations.

Keywords

References

  1. Opt Express. 2016 Feb 8;24(3):2047-64 [PMID: 26906780]
  2. Opt Express. 2014 Jun 30;22(13):16178-87 [PMID: 24977869]
  3. Nat Nanotechnol. 2018 Mar;13(3):227-232 [PMID: 29379204]
  4. Opt Express. 2020 Feb 3;28(3):3073-3085 [PMID: 32121982]
  5. Opt Express. 2011 Mar 14;19(6):4815-26 [PMID: 21445117]
  6. Nat Commun. 2012;3:1171 [PMID: 23132021]
  7. Nat Nanotechnol. 2016 Jan;11(1):23-36 [PMID: 26740041]
  8. Nat Mater. 2014 Feb;13(2):139-50 [PMID: 24452357]
  9. Nat Commun. 2013;4:1527 [PMID: 23443555]
  10. Science. 2016 Nov 18;354(6314): [PMID: 27856851]
  11. Phys Rev Lett. 2017 Sep 22;119(12):123902 [PMID: 29341643]
  12. Nat Commun. 2015 Aug 27;6:8069 [PMID: 26311109]
  13. Sci Rep. 2022 Dec 19;12(1):21904 [PMID: 36535983]
  14. Phys Rev Lett. 2021 Jun 25;126(25):253901 [PMID: 34241501]
  15. Nano Lett. 2014 Mar 12;14(3):1394-9 [PMID: 24547692]
  16. Science. 2016 Jun 3;352(6290):1190-4 [PMID: 27257251]
  17. Phys Rev Lett. 2019 Apr 19;122(15):153907 [PMID: 31050543]
  18. Light Sci Appl. 2018 Aug 29;7:58 [PMID: 30839584]

Word Cloud

Created with Highcharts 10.0.0decompositionquadraturenumericalproceduremultipolemethodsintegrationaccurateelectromagneticusingLebedevGaussianperformprojectionsurfacepointsnanospherescatteringpaperdevelopefficientFirstlybrieflyreviewprincipleshighlightingtwoincludingvolumeSecondlydiscussprovidedetailedrecipeselectcorrespondingweightingfactorillustrateaccuracyefficiencysamplingunitsphereregulartetrahedrondemonstrationsisotropicdielectricsymmetricscattereranisotropicvalidateobtainedresultsconsistentMietheorysymmetryconstraintsfiniteelementsimulationsEfficientnumerical-projectionmultipolesobjectsLightMultipoleNumerical

Similar Articles

Cited By (2)