Left-dominance for resting-state temporal low-gamma power in children with impaired word-decoding and without comorbid ADHD.

Oliver H M Lasnick, Roeland Hancock, Fumiko Hoeft
Author Information
  1. Oliver H M Lasnick: Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America. ORCID
  2. Roeland Hancock: Wu Tsai Institute, Yale University, New Haven, Connecticut, United States of America.
  3. Fumiko Hoeft: Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America.

Abstract

One theory of the origins of reading disorders (i.e., dyslexia) is a language network which cannot effectively 'entrain' to speech, with cascading effects on the development of phonological skills. Low-gamma (low-γ, 30-45 Hz) neural activity, particularly in the left hemisphere, is thought to correspond to tracking at phonemic rates in speech. The main goals of the current study were to investigate temporal low-γ band-power during rest in a sample of children and adolescents with and without reading disorder (RD). Using a Bayesian statistical approach to analyze the power spectral density of EEG data, we examined whether (1) resting-state temporal low-γ power was attenuated in the left temporal region in RD; (2) low-γ power covaried with individual reading performance; (3) low-γ temporal lateralization was atypical in RD. Contrary to our expectations, results did not support the hypothesized effects of RD status and poor decoding ability on left hemisphere low-γ power or lateralization: post-hoc tests revealed that the lack of atypicality in the RD group was not due to the inclusion of those with comorbid attentional deficits. However, post-hoc tests also revealed a specific left-dominance for low-γ rhythms in children with reading deficits only, when participants with comorbid attentional deficits were excluded. We also observed an inverse relationship between decoding and left-lateralization in the controls, such that those with better decoding skills were less likely to show left-lateralization. We discuss these unexpected findings in the context of prior theoretical frameworks on temporal sampling. These results may reflect the importance of real-time language processing to evoke gamma rhythms in the phonemic range during childhood and adolescence.

References

  1. Neuron. 2013 Feb 20;77(4):750-61 [PMID: 23439126]
  2. Front Neuroinform. 2015 Jun 18;9:16 [PMID: 26150785]
  3. Behav Brain Res. 2008 Dec 22;195(2):215-22 [PMID: 18831992]
  4. Cortex. 2022 Dec;157:99-116 [PMID: 36279756]
  5. Front Hum Neurosci. 2020 Feb 04;14:10 [PMID: 32116601]
  6. Cognition. 2006 Sep;101(2):385-413 [PMID: 16844106]
  7. Neuropsychologia. 2012 Jun;50(7):1543-52 [PMID: 22445915]
  8. Dyslexia. 2014 Nov;20(4):305-29 [PMID: 25257672]
  9. Front Psychiatry. 2018 Mar 27;9:101 [PMID: 29636707]
  10. J Child Psychol Psychiatry. 2011 May;52(5):547-57 [PMID: 21126246]
  11. Neuron. 2013 Mar 6;77(5):980-91 [PMID: 23473326]
  12. Psychon Bull Rev. 2021 Jun;28(3):813-826 [PMID: 33037582]
  13. Nat Neurosci. 2005 Jul;8(7):862-3 [PMID: 15924138]
  14. Neuropsychologia. 2006;44(14):2814-21 [PMID: 16876830]
  15. J Child Psychol Psychiatry. 2017 Jun;58(6):719-727 [PMID: 28176347]
  16. Clin Neurophysiol. 2012 Dec;123(12):2384-91 [PMID: 22658819]
  17. Neuroimage. 2019 Oct 15;200:460-473 [PMID: 31233907]
  18. Dyslexia. 2017 Aug;23(3):209-233 [PMID: 28497530]
  19. Dev Cogn Neurosci. 2019 Apr;36:100593 [PMID: 30318344]
  20. Trends Cogn Sci. 2014 Jun;18(6):300-9 [PMID: 24630166]
  21. Child Neuropsychol. 2021 Oct;27(7):888-910 [PMID: 33849390]
  22. Nat Neurosci. 2012 Mar 18;15(4):511-7 [PMID: 22426255]
  23. Cortex. 2019 Feb;111:286-302 [PMID: 30557815]
  24. Hum Brain Mapp. 2019 Jun 15;40(9):2677-2698 [PMID: 30784139]
  25. Neuron. 2009 Nov 12;64(3):419-30 [PMID: 19914189]
  26. Hum Brain Mapp. 2018 Oct;39(10):3854-3870 [PMID: 29797747]
  27. J Child Psychol Psychiatry. 2005 Oct;46(10):1045-56 [PMID: 16178928]
  28. Neuron. 2011 Dec 22;72(6):1080-90 [PMID: 22196341]
  29. Front Hum Neurosci. 2013 Aug 09;7:454 [PMID: 23950742]
  30. Psychol Bull. 2016 May;142(5):498-545 [PMID: 26727308]
  31. Ann Neurol. 1980 May;7(5):412-20 [PMID: 7396420]
  32. Neurobiol Learn Mem. 2018 Mar;149:107-117 [PMID: 29474959]
  33. Behav Brain Res. 2006 Dec 15;175(2):296-304 [PMID: 17045661]
  34. Neuroimage. 2016 Dec;143:40-49 [PMID: 27520749]
  35. Neuropsychologia. 2013 Sep;51(11):2087-99 [PMID: 23872049]
  36. Neuroimage. 2019 Sep;198:181-197 [PMID: 31103785]
  37. Brain Topogr. 2021 Jul;34(4):403-414 [PMID: 33950323]
  38. J Child Psychol Psychiatry. 1975 Jul;16(3):181-97 [PMID: 1158987]
  39. Dev Cogn Neurosci. 2022 Oct;57:101134 [PMID: 35863172]
  40. Dev Neuropsychol. 2008;33(6):663-81 [PMID: 19005910]
  41. Wiley Interdiscip Rev Cogn Sci. 2012 May;3(3):377-386 [PMID: 26301469]
  42. Dev Sci. 2009 Sep;12(5):732-45 [PMID: 19702766]
  43. Psychol Bull. 2012 Mar;138(2):322-52 [PMID: 22250824]
  44. Sci Data. 2017 Dec 19;4:170181 [PMID: 29257126]
  45. Sci Rep. 2016 Jan 25;6:19737 [PMID: 26804355]
  46. New Dir Child Adolesc Dev. 2019 May;2019(165):91-109 [PMID: 31070302]
  47. Clin Neurophysiol. 2010 Nov;121(11):1871-7 [PMID: 20483659]
  48. Dev Cogn Neurosci. 2018 Jun;31:58-66 [PMID: 29742488]
  49. Behav Brain Res. 2011 Jul 7;220(2):263-70 [PMID: 21295619]
  50. Annu Rev Clin Psychol. 2019 May 7;15:579-604 [PMID: 30673512]
  51. Brain Res Rev. 2007 Jan;53(1):63-88 [PMID: 16887192]
  52. Cortex. 2017 Aug;93:206-219 [PMID: 28686908]
  53. J Psychiatr Res. 2021 May;137:186-193 [PMID: 33684643]
  54. Front Hum Neurosci. 2014 Jun 02;8:346 [PMID: 24920944]
  55. Front Hum Neurosci. 2019 Jan 09;12:521 [PMID: 30687041]
  56. Laterality. 2020 Jan;25(1):109-125 [PMID: 30987535]
  57. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18688-93 [PMID: 20956297]
  58. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4101-5 [PMID: 26737196]
  59. J Learn Disabil. 2020 Sep/Oct;53(5):354-365 [PMID: 32452713]
  60. Clin Neurophysiol. 2008 Jan;119(1):116-33 [PMID: 18037343]
  61. Annu Rev Clin Psychol. 2015;11:283-307 [PMID: 25594880]
  62. Arch Gen Psychiatry. 1985 Jul;42(7):696-702 [PMID: 4015311]
  63. Dev Sci. 2006 Nov;9(6):642-54 [PMID: 17059461]
  64. Neuron. 2007 Dec 20;56(6):1127-34 [PMID: 18093532]
  65. CMAJ. 2012 Aug 7;184(11):1265-9 [PMID: 22371511]
  66. Cereb Cortex. 2015 Jun;25(6):1509-18 [PMID: 24334917]
  67. J Neurosci. 1998 Sep 1;18(17):6939-51 [PMID: 9712663]
  68. Science. 2008 Apr 4;320(5872):110-3 [PMID: 18388295]
  69. Neuroreport. 2012 Oct 3;23(14):851-6 [PMID: 22889887]
  70. Front Neurosci. 2013 Dec 26;7:267 [PMID: 24431986]

Grants

  1. T32 DC017703/NIDCD NIH HHS
  2. R01 HD094834/NICHD NIH HHS
  3. F31 HD107944/NICHD NIH HHS
  4. R01 HD096261/NICHD NIH HHS
  5. U24 AT011281/NCCIH NIH HHS

MeSH Term

Child
Adolescent
Humans
Attention Deficit Disorder with Hyperactivity
Bayes Theorem
Gamma Rhythm
Dyslexia
Language

Word Cloud

Created with Highcharts 10.0.0low-γtemporalRDpowerreadingleftchildrendecodingcomorbiddeficitslanguagespeecheffectsskillshemispherephonemicwithoutresting-stateresultspost-hoctestsrevealedattentionalalsorhythmsleft-lateralizationOnetheoryoriginsdisordersiedyslexianetworkeffectively'entrain'cascadingdevelopmentphonologicalLow-gamma30-45Hzneuralactivityparticularlythoughtcorrespondtrackingratesmaingoalscurrentstudyinvestigateband-powerrestsampleadolescentsdisorderUsingBayesianstatisticalapproachanalyzespectraldensityEEGdataexaminedwhether1attenuatedregion2covariedindividualperformance3lateralizationatypicalContraryexpectationssupporthypothesizedstatuspoorabilitylateralization:lackatypicalitygroupdueinclusionHoweverspecificleft-dominanceparticipantsexcludedobservedinverserelationshipcontrolsbetterlesslikelyshowdiscussunexpectedfindingscontextpriortheoreticalframeworkssamplingmayreflectimportancereal-timeprocessingevokegammarangechildhoodadolescenceLeft-dominancelow-gammaimpairedword-decodingADHD

Similar Articles

Cited By