Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme.
Xavier Kubiak, Ivan Polsinelli, Leonard M G Chavas, Cameron D Fyfe, Alain Guillot, Laura Fradale, Clémence Brewee, Stéphane Grimaldi, Guillaume Gerbaud, Aurélien Thureau, Pierre Legrand, Olivier Berteau, Alhosna Benjdia
Author Information
Xavier Kubiak: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
Ivan Polsinelli: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
Leonard M G Chavas: Nagoya University, Nagoya, Japan.
Cameron D Fyfe: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
Alain Guillot: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
Laura Fradale: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
Clémence Brewee: Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
D-Amino acid residues, found in countless peptides and natural products including ribosomally synthesized and post-translationally modified peptides (RiPPs), are critical for the bioactivity of several antibiotics and toxins. Recently, radical S-adenosyl-L-methionine (SAM) enzymes have emerged as the only biocatalysts capable of installing direct and irreversible epimerization in RiPPs. However, the mechanism underpinning this biochemical process is ill-understood and the structural basis for this post-translational modification remains unknown. Here we report an atomic-resolution crystal structure of a RiPP-modifying radical SAM enzyme in complex with its substrate properly positioned in the active site. Crystallographic snapshots, size-exclusion chromatography-small-angle x-ray scattering, electron paramagnetic resonance spectroscopy and biochemical analyses reveal how epimerizations are installed in RiPPs and support an unprecedented enzyme mechanism for peptide epimerization. Collectively, our study brings unique perspectives on how radical SAM enzymes interact with RiPPs and catalyze post-translational modifications in natural products.
References
Montalban-Lopez, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).
[PMID: 32935693]
Benjdia, A. & Berteau, O. Radical SAM enzymes and ribosomally-synthesized and post-translationally modified peptides: a growing importance in the microbiomes. Front. Chem. 9, 678068 (2021).
[PMID: 34350157]
Benjdia, A. & Berteau, O. Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota. Biochem. Soc. Trans. 44, 109–115 (2016).
[PMID: 26862195]
Balty, C. et al. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. J. Biol. Chem. 294, 14512–14525 (2019).
[PMID: 31337708]
Balty, C. et al. Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: mechanistic insights into thioether bond formation by radical SAM enzymes. J. Biol. Chem. 295, 16665–16677 (2020).
[PMID: 32972973]
Balskus, E. P. The human microbiome. ACS Infect. Dis. 4, 1–2 (2018).
[PMID: 29325418]
Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).
[PMID: 25215495]
Benjdia, A., Balty, C. & Berteau, O. Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Front. Chem. 5, 87 (2017).
[PMID: 29167789]
Benjdia, A., Guillot, A., Ruffié, P., Leprince, J. & Berteau, O. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat. Chem. 9, 698–707 (2017).
[PMID: 28644475]
Burkhart, B. J., Hudson, G. A., Dunbar, K. L. & Mitchell, D. A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 11, 564–570 (2015).
[PMID: 26167873]
Heck, S. D. et al. Posttranslational amino acid epimerization: enzyme-catalyzed isomerization of amino acid residues in peptide chains. Proc. Natl Acad. Sci. USA 93, 4036–4039 (1996).
[PMID: 8633012]
Huo, L. & van der Donk, W. A. Discovery and characterization of bicereucin, an unusual D-amino acid-containing mixed two-component lantibiotic. J. Am. Chem. Soc. 138, 5254–5257 (2016).
[PMID: 27074593]
Lohans, C. T., Li, J. L. & Vederas, J. C. Structure and biosynthesis of carnolysin, a homologue of enterococcal cytolysin with D-amino acids. J. Am. Chem. Soc. 136, 13150–13153 (2014).
[PMID: 25207953]
Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).
[PMID: 22983711]
Parent, A. et al. Mechanistic investigations of PoyD, a radical S-adenosyl-L-methionine enzyme catalyzing iterative and directional epimerizations in polytheonamide A biosynthesis. J. Am. Chem. Soc. 140, 2469–2477 (2018).
[PMID: 29253341]
Butcher, B. G., Lin, Y. P. & Helmann, J. D. The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system. J. Bacteriol. 189, 8616–8625 (2007).
[PMID: 17921301]
Popp, P. F. et al. The epipeptide biosynthesis locus epeXEPAB is widely distributed in firmicutes and triggers intrinsic cell envelope stress. Microb. Physiol. 31, 306–318 (2021).
[PMID: 34120110]
Popp, P. F., Benjdia, A., Strahl, H., Berteau, O. & Mascher, T. The epipeptide YydF intrinsically triggers the cell envelope stress response of Bacillus subtilis and causes severe membrane perturbations. Front Microbiol. 11, 151 (2020).
[PMID: 32117169]
Radeck, J. et al. Anatomy of the bacitracin resistance network in Bacillus subtilis. Mol. Microbiol. 100, 607–620 (2016).
[PMID: 26815905]
Benjdia, A. et al. The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction. Nat. Commun. 6, 8377 (2015).
[PMID: 26456915]
Pierre, S. et al. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat. Chem. Biol. 8, 957–959 (2012).
[PMID: 23064318]
Parent, A. et al. The B12-radical SAM enzyme PoyC catalyzes valine C-β-methylation during polytheonamide biosynthesis. J. Am. Chem. Soc. 138, 15515–15518 (2016).
[PMID: 27934015]
Freeman, M. F., Helf, M. J., Bhushan, A., Morinaka, B. I. & Piel, J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat. Chem. 9, 387–395 (2017).
[PMID: 28338684]
Benjdia, A. et al. Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase. J. Biol. Chem. 292, 10835–10844 (2017).
[PMID: 28476884]
Dowling, D. P. et al. Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. Nat. Chem. Biol. 10, 106–112 (2014).
[PMID: 24362703]
Goldman, P. J., Grove, T. L., Booker, S. J. & Drennan, C. L. X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry. Proc. Natl Acad. Sci. USA 110, 15949–15954 (2013).
[PMID: 24048029]
Davis, K. M. et al. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition. Proc. Natl Acad. Sci. USA 114, 10420–10425 (2017).
[PMID: 28893989]
Grove, T. L. et al. Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J. Am. Chem. Soc. 139, 11734–11744 (2017).
[PMID: 28704043]
Vey, J. L. & Drennan, C. L. Structural insights into radical generation by the radical SAM superfamily. Chem. Rev. 111, 2487–2506 (2011).
[PMID: 21370834]
Haft, D. H. & Basu, M. K. Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol. 193, 2745–2755 (2011).
[PMID: 21478363]
Benjdia, A. et al. Anaerobic sulfatase-maturating enzyme—a mechanistic link with glycyl radical-activating enzymes? FEBS J. 277, 1906–1920 (2010).
[PMID: 20218986]
Grell, T. A. J. et al. Structural and spectroscopic analyses of the sporulation killing factor biosynthetic enzyme SkfB, a bacterial AdoMet radical sactisynthase. J. Biol. Chem. 293, 17349–17361 (2018).
[PMID: 30217813]
Grell, T. A., Goldman, P. J. & Drennan, C. L. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem. 290, 3964–3971 (2015).
[PMID: 25477505]
Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).
[PMID: 24476342]
Tao, L., Zhu, W., Klinman, J. P. & Britt, R. D. Electron paramagnetic resonance spectroscopic identification of the Fe–S clusters in the SPASM domain-containing radical SAM enzyme PqqE. Biochemistry 58, 5173–5187 (2019).
[PMID: 31769977]
Zhu, W. et al. Structural properties and catalytic implications of the SPASM domain iron-sulfur clusters in methylorubrum extorquens PqqE. J. Am. Chem. Soc. 142, 12620–12634 (2020).
[PMID: 32643933]
Yokoyama, K., Ohmori, D., Kudo, F. & Eguchi, T. Mechanistic study on the reaction of a radical SAM dehydrogenase BtrN by electron paramagnetic resonance spectroscopy. Biochemistry 47, 8950–8960 (2008).
[PMID: 18672902]
Weerasinghe, N. W., Habibi, Y., Uggowitzer, K. A. & Thibodeaux, C. J. Exploring the conformational landscape of a lanthipeptide synthetase using native mass spectrometry. Biochemistry 60, 1506–1519 (2021).
[PMID: 33887902]
Benjdia, A. et al. Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin A biosynthesis. Chem. Commun. 52, 6249–6252 (2016).
[DOI: 10.1039/C6CC01317A]
Morinaka, B. I. et al. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products. Angew. Chem. Int. Ed. Engl. 53, 8503–8507 (2014).
[PMID: 24943072]
Dathe, M. & Wieprecht, T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta 1462, 71–87 (1999).
[PMID: 10590303]
Ayikpoe, R. et al. Spectroscopic and electrochemical characterization of the mycofactocin biosynthetic protein, MftC, provides insight into its redox flipping mechanism. Biochemistry 58, 940–950 (2019).
[PMID: 30628436]
Balo, A. R. et al. Trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB. Proc. Natl Acad. Sci. USA 118, e2101571118 (2021).
[PMID: 34001621]
Brito, J. A., Denkmann, K., Pereira, I. A., Archer, M. & Dahl, C. Thiosulfate dehydrogenase (TsdA) from allochromatium vinosum: structural and functional insights into thiosulfate oxidation. J. Biol. Chem. 290, 9222–9238 (2015).
[PMID: 25673691]
Nakamura, R., Hikita, M., Ogawa, S., Takahashi, Y. & Fujishiro, T. Snapshots of PLP-substrate and PLP-product external aldimines as intermediates in two types of cysteine desulfurase enzymes. FEBS J. 287, 1138–1154 (2020).
[PMID: 31587510]
Denisov, I. G., Makris, T. M., Sligar, S. G. & Schlichting, I. Structure and chemistry of cytochrome P450. Chem. Rev. 105, 2253–2277 (2005).
[PMID: 15941214]
Kudo, F., Hoshi, S., Kawashima, T., Kamachi, T. & Eguchi, T. Characterization of a radical S-adenosyl-L-methionine epimerase, NeoN, in the last step of neomycin B biosynthesis. J. Am. Chem. Soc. 136, 13909–13915 (2014).
[PMID: 25230155]
Besandre, R. A. et al. HygY is a twitch radical SAM epimerase with latent dehydrogenase activity revealed upon mutation of a single cysteine residue. J. Am. Chem. Soc. 143, 15152–15158 (2021).
[PMID: 34491039]
Dong, S. H., Liu, A., Mahanta, N., Mitchell, D. A. & Nair, S. K. Mechanistic basis for ribosomal peptide backbone modifications. ACS Cent. Sci. 5, 842–851 (2019).
[PMID: 31139720]
Zhao, G. et al. Structural basis for a dual function ATP grasp ligase that installs single and bicyclic omega-ester macrocycles in a new multicore RiPP natural product. J. Am. Chem. Soc. 143, 8056–8068 (2021).
[PMID: 34028251]
Song, I. et al. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB. Nat. Chem. Biol. 17, 1123–1131 (2021).
[PMID: 34475564]
Miller, F. S. et al. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis. Nat. Commun. 12, 5355 (2021).
[PMID: 34504067]
Fyfe, C. D. et al. Crystallographic snapshots of a B12-dependent radical SAM methyltransferase. Nature 602, 336–342 (2022).
[PMID: 35110733]
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
[PMID: 17681537]
Chavas, L. M. G. et al. PROXIMA-1 beamline for macromolecular crystallography measurements at Synchrotron SOLEIL. J. Synchrotron Radiat. 28, 970–976 (2021).
[PMID: 33950005]
Kraft, P. et al. Performance of single-photon-counting PILATUS detector modules. J. Synchrotron Radiat. 16, 368–375 (2009).
[PMID: 19395800]
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
[PMID: 20124692]
Legrand, P. XDSME: XDS made easier. GitHub. github.com/legrandp/xdsme (2017).
Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).
[PMID: 16369096]
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).
[PMID: 23793146]
Winn, M. D. et al. Overview of the CCP 4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
[PMID: 21460441]
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
[PMID: 18156677]
Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Crystallogr. 37, 843–844 (2004).
[DOI: 10.1107/S0021889804018047]
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
[PMID: 19461840]
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
[PMID: 20383002]
Murshudov, G. N. et al. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).
[PMID: 21460454]
Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).
[PMID: 22505257]
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
[PMID: 20057044]
Thureau, A., Roblin, P. & Perez, J. BioSAXS on the SWING beamline at Synchrotron SOLEIL. J. Appl. Crystallogr. 54, 1698–1710 (2021).
[DOI: 10.1107/S1600576721008736]
Grove, T. L. et al. A radically different mechanism for S-adenosylmethionine–dependent methyltransferases. Science 332, 604–607 (2011).
[PMID: 21415317]
Boal, A. K. et al. Structural basis for methyl transfer by a radical SAM enzyme. Science 332, 1089–1092 (2011).
[PMID: 21527678]
Blaszczyk, A. J. et al. Spectroscopic and electrochemical characterization of the iron–sulfur and cobalamin cofactors of TsrM, an unusual radical S-adenosylmethionine methylase. J. Am. Chem. Soc. 138, 3416–3426 (2016).
[PMID: 26841310]
Grants
ANR-17-CE11-0014/Agence Nationale de la Recherche (French National Research Agency)
ANR-20-CE44-0005/Agence Nationale de la Recherche (French National Research Agency)