Contrasting effects of an extended fall period and winter heatwaves on the overwintering fitness of diapausing disease vector, .

Samantha L Sturiale, Peter A Armbruster
Author Information
  1. Samantha L Sturiale: Department of Biology, Georgetown University, Washington, DC 20057, United States.
  2. Peter A Armbruster: Department of Biology, Georgetown University, Washington, DC 20057, United States.

Abstract

Climate change is expected to dramatically alter autumnal and winter conditions in many temperate regions. However, limited data is available to accurately predict how these changes will impact species' overwinter survival and post-winter fitness. Here, we determine how a longer, warmer fall period and winter heatwaves affect overwintering fitness and post-winter performance of the invasive mosquito vector, . We found that a longer, warmer fall period representative of early entry into diapause did not affect overwinter survival but did lead to reduced post-winter performance for multiple traits. Specifically, larvae that experienced longer, warmer fall conditions as diapause embryos exhibited reduced post-diapause larval starvation tolerance, increased post-diapause larval mortality, and longer post-diapause larval development compared to individuals from the short-fall treatments. These negative post-diapause fitness effects likely resulted from the greater energetic demands and/or damage incurred during the warmer, longer fall period. In contrast, exposure to winter heatwaves increased overwinter survival, possibly by allowing diapausing embryos to escape or repair cold injury. Finally, fall treatment and winter heatwaves had an interactive effect on male development time, while neither treatment impacted pupal mass in either sex. Overall, our results highlight that experiments that fail to measure post-diapause fitness are likely to substantially under-estimate the impacts of climate change on post-winter performance. Additionally, our results emphasize that it is crucial to consider the potentially conflicting effects of different aspects of climate change on a species' overall overwintering success.

Keywords

References

  1. J Anim Ecol. 2008 Mar;77(2):257-64 [PMID: 18070041]
  2. Sci Rep. 2018 Mar 13;8(1):4414 [PMID: 29535362]
  3. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  4. J Insect Physiol. 2007 Aug;53(8):760-73 [PMID: 17532002]
  5. J Exp Biol. 2010 Mar 15;213(6):980-94 [PMID: 20190123]
  6. Comp Biochem Physiol A Mol Integr Physiol. 2014 Dec;178:51-8 [PMID: 25139402]
  7. J Exp Zool A Comp Exp Biol. 2003 Jul 1;298(1):23-31 [PMID: 12840836]
  8. Biol Rev Camb Philos Soc. 2015 Feb;90(1):214-35 [PMID: 24720862]
  9. PLoS Negl Trop Dis. 2012;6(11):e1918 [PMID: 23209859]
  10. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14509-11 [PMID: 11698659]
  11. Vector Borne Zoonotic Dis. 2020 Feb;20(2):71-81 [PMID: 31556813]
  12. J Evol Biol. 2003 Jul;16(4):721-30 [PMID: 14632235]
  13. Ecol Lett. 2012 May;15(5):502-8 [PMID: 22414183]
  14. J Insect Physiol. 2019 Feb - Mar;113:24-32 [PMID: 30653982]
  15. Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):E2415-23 [PMID: 22869707]
  16. Ecol Lett. 2021 Apr;24(4):698-707 [PMID: 33554374]
  17. J Anim Ecol. 2011 Jan;80(1):4-18 [PMID: 20726924]
  18. J Insect Physiol. 2002 Nov;48(11):1031-1039 [PMID: 12770026]
  19. Evolution. 2020 Jul;74(7):1451-1465 [PMID: 32490563]
  20. Oecologia. 1985 Dec;67(4):506-510 [PMID: 28311035]
  21. J Med Entomol. 1994 Mar;31(2):192-201 [PMID: 8189409]
  22. Science. 2016 Nov 11;354(6313): [PMID: 27846577]
  23. J Insect Physiol. 2011 Dec;57(12):1651-9 [PMID: 21910996]
  24. Comp Biochem Physiol A Mol Integr Physiol. 2011 Feb;158(2):229-34 [PMID: 21074633]
  25. Med Vet Entomol. 2004 Sep;18(3):215-27 [PMID: 15347388]
  26. Nat Microbiol. 2019 May;4(5):854-863 [PMID: 30833735]
  27. J Med Entomol. 2002 Jul;39(4):699-704 [PMID: 12144308]
  28. J Insect Physiol. 2000 May 1;46(5):655-661 [PMID: 10742513]
  29. Nat Commun. 2018 Jan 30;9(1):426 [PMID: 29382833]
  30. J Insect Physiol. 2010 Feb;56(2):185-94 [PMID: 19837077]
  31. Nature. 2022 Jul;607(7919):555-562 [PMID: 35483403]
  32. PLoS One. 2013;8(4):e60874 [PMID: 23565282]
  33. Comp Biochem Physiol A Mol Integr Physiol. 2007 May;147(1):231-8 [PMID: 17275375]
  34. Parasit Vectors. 2012 May 23;5:100 [PMID: 22621367]
  35. Cryobiology. 1989 Jun;26(3):285-9 [PMID: 2743790]
  36. J Insect Physiol. 2006 Feb;52(2):113-27 [PMID: 16332347]
  37. J Therm Biol. 2015 Dec;54:5-11 [PMID: 26615721]
  38. Oecologia. 1983 Feb;56(2-3):185-192 [PMID: 28310194]
  39. PLoS One. 2012;7(9):e44515 [PMID: 22970238]
  40. Vector Borne Zoonotic Dis. 2007 Spring;7(1):76-85 [PMID: 17417960]
  41. Trends Ecol Evol. 2015 Mar;30(3):169-76 [PMID: 25662784]
  42. Curr Opin Insect Sci. 2020 Oct;41:54-62 [PMID: 32711362]
  43. J Med Entomol. 2016 Sep;53(5):1013-23 [PMID: 27354438]

Grants

  1. R01 AI132409/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0fallwinterfitnesslongerpost-diapausechangepost-winterwarmerperiodheatwaveseffectsoverwintersurvivaloverwinteringperformancelarvalClimateconditionsspecies'affectvectordiapausereducedembryosincreaseddevelopmentlikelydiapausingtreatmentresultsclimateexpecteddramaticallyalterautumnalmanytemperateregionsHoweverlimiteddataavailableaccuratelypredictchangeswillimpactdetermineinvasivemosquitofoundrepresentativeearlyentryleadmultipletraitsSpecificallylarvaeexperiencedexhibitedstarvationtolerancemortalitycomparedindividualsshort-falltreatmentsnegativeresultedgreaterenergeticdemandsand/ordamageincurredcontrastexposurepossiblyallowingescaperepaircoldinjuryFinallyinteractiveeffectmaletimeneitherimpactedpupalmasseithersexOverallhighlightexperimentsfailmeasuresubstantiallyunder-estimateimpactsAdditionallyemphasizecrucialconsiderpotentiallyconflictingdifferentaspectsoverallsuccessContrastingextendeddiseaseAedesalbopictusCarry-overDiapauseOverwinteringWinter

Similar Articles

Cited By