Bond-selective fluorescence imaging with single-molecule sensitivity.

Haomin Wang, Dongkwan Lee, Yulu Cao, Xiaotian Bi, Jiajun Du, Kun Miao, Lu Wei
Author Information
  1. Haomin Wang: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  2. Dongkwan Lee: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  3. Yulu Cao: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  4. Xiaotian Bi: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  5. Jiajun Du: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  6. Kun Miao: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  7. Lu Wei: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

Abstract

Bioimaging harnessing optical contrasts and chemical specificity is of vital importance in probing complex biology. Vibrational spectroscopy based on mid-infrared (mid-IR) excitation can reveal rich chemical information about molecular distributions. However, its full potential for bioimaging is hindered by the achievable sensitivity. Here, we report bond selective fluorescence-detected infrared-excited (BonFIRE) spectral microscopy. BonFIRE employs two-photon excitation in the mid-IR and near-IR to upconvert vibrational excitations to electronic states for fluorescence detection, thus encoding vibrational information into fluorescence. The system utilizes tuneable narrowband picosecond pulses to ensure high sensitivity, biocompatibility, and robustness for bond-selective biological interrogations over a wide spectrum of reporter molecules. We demonstrate BonFIRE spectral imaging in both fingerprint and cell-silent spectroscopic windows with single-molecule sensitivity for common fluorescent dyes. We then demonstrate BonFIRE imaging on various intracellular targets in fixed and live cells, neurons, and tissues, with promises for further vibrational multiplexing. For dynamic bioanalysis in living systems, we implement a high-frequency modulation scheme and demonstrate time-lapse BonFIRE microscopy of live HeLa cells. We expect BonFIRE to expand the bioimaging toolbox by providing a new level of bond-specific vibrational information and facilitate functional imaging and sensing for biological investigations.

References

  1. Nat Biotechnol. 2020 Mar;38(3):293-296 [PMID: 31873214]
  2. Annu Rev Phys Chem. 2015 Apr;66:357-77 [PMID: 25580624]
  3. J Phys Chem B. 2017 Sep 21;121(37):8838-8846 [PMID: 28741348]
  4. Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3388-3396 [PMID: 32015103]
  5. Biophys J. 2001 Apr;80(4):2029-36 [PMID: 11259316]
  6. J Am Chem Soc. 2021 Mar 3;143(8):3060-3064 [PMID: 33596055]
  7. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  8. J Am Chem Soc. 2021 Aug 4;143(30):11490-11499 [PMID: 34264654]
  9. Sci Adv. 2021 May 14;7(20): [PMID: 33990332]
  10. J Chem Phys. 2022 May 7;156(17):174202 [PMID: 35525668]
  11. ACS Photonics. 2016 Jul 20;3(7):1315-1323 [PMID: 27517058]
  12. J Phys Chem Lett. 2019 Jul 5;10(13):3563-3570 [PMID: 31185166]
  13. ACS Chem Biol. 2022 Jul 15;17(7):1621-1637 [PMID: 35772040]
  14. Nat Chem Biol. 2014 Jul;10(7):512-23 [PMID: 24937069]
  15. Science. 2006 Jul 14;313(5784):200-4 [PMID: 16840693]
  16. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  17. J Am Chem Soc. 2021 Jul 28;143(29):10809-10815 [PMID: 34270255]
  18. Nat Methods. 2020 Aug;17(8):844-851 [PMID: 32601425]
  19. J Phys Chem B. 2005 Mar 24;109(11):5012-20 [PMID: 16863161]
  20. Chem Rev. 2017 Apr 12;117(7):5146-5173 [PMID: 27958707]
  21. Sci Adv. 2016 Sep 28;2(9):e1600521 [PMID: 27704043]
  22. Nat Chem Biol. 2014 Feb;10(2):127-32 [PMID: 24292070]
  23. Biomed Opt Express. 2021 Dec 01;12(12):7886-7905 [PMID: 35003873]
  24. J Am Chem Soc. 2020 Oct 21;142(42):17828-17844 [PMID: 33034452]
  25. J Phys Chem Lett. 2019 Jun 6;10(11):2857-2861 [PMID: 31025568]
  26. Nat Photonics. 2019 Sep;13:609-615 [PMID: 31440304]
  27. Nat Methods. 2011 Nov 06;8(12):1027-36 [PMID: 22056676]
  28. Biophys J. 2007 Nov 1;93(9):3285-90 [PMID: 17660318]
  29. J Am Chem Soc. 2001 Oct 17;123(41):10095-8 [PMID: 11592889]
  30. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  31. Appl Spectrosc. 2012 Oct;66(10):1091-120 [PMID: 23031693]
  32. Nat Commun. 2020 Jun 10;11(1):2945 [PMID: 32522983]
  33. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14209-14 [PMID: 17557837]

Grants

  1. DP2 GM140919/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0BonFIREsensitivityvibrationalimaginginformationfluorescencedemonstratechemicalmid-IRexcitationbioimagingspectralmicroscopybiologicalsingle-moleculelivecellsBioimagingharnessingopticalcontrastsspecificityvitalimportanceprobingcomplexbiologyVibrationalspectroscopybasedmid-infraredcanrevealrichmoleculardistributionsHoweverfullpotentialhinderedachievablereportbondselectivefluorescence-detectedinfrared-excitedemploystwo-photonnear-IRupconvertexcitationselectronicstatesdetectionthusencodingsystemutilizestuneablenarrowbandpicosecondpulsesensurehighbiocompatibilityrobustnessbond-selectiveinterrogationswidespectrumreportermoleculesfingerprintcell-silentspectroscopicwindowscommonfluorescentdyesvariousintracellulartargetsfixedneuronstissuespromisesmultiplexingdynamicbioanalysislivingsystemsimplementhigh-frequencymodulationschemetime-lapseHeLaexpectexpandtoolboxprovidingnewlevelbond-specificfacilitatefunctionalsensinginvestigationsBond-selective

Similar Articles

Cited By