A multistage Sendai virus vaccine incorporating latency-associated antigens induces protection against acute and latent tuberculosis.

Zhidong Hu, Jingxian Xia, Juan Wu, Huimin Zhao, Ping Ji, Ling Gu, Wenfei Gu, Zhenyan Chen, Jinchuan Xu, Xuejiao Huang, Jian Ma, Anke Chen, Jixi Li, Tsugumine Shu, Xiao-Yong Fan
Author Information
  1. Zhidong Hu: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  2. Jingxian Xia: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  3. Juan Wu: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  4. Huimin Zhao: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  5. Ping Ji: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  6. Ling Gu: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  7. Wenfei Gu: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  8. Zhenyan Chen: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  9. Jinchuan Xu: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  10. Xuejiao Huang: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China.
  11. Jian Ma: ID Pharma, Ibaraki, Japan.
  12. Anke Chen: State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.
  13. Jixi Li: State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.
  14. Tsugumine Shu: ID Pharma, Ibaraki, Japan.
  15. Xiao-Yong Fan: Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People's Republic of China. ORCID

Abstract

One-quarter of the world's population is infected with (). After initial exposure, more immune-competent persons develop asymptomatic latent tuberculosis infection (LTBI) but not active diseases, creates an extensive reservoir at risk of developing active tuberculosis. Previously, we constructed a novel recombinant Sendai virus (SeV)-vectored vaccine encoding two dominant antigens of , which elicited immune protection against acute infection. In this study, nine latency-associated antigens were screened as potential supplementary vaccine candidate antigens, and three antigens (Rv2029c, Rv2028c, and Rv3126c) were selected based on their immune-therapeutic effect in mice, and their elevated immune responses in LTBI human populations. Then, a recombinant SeV-vectored vaccine, termed SeV986A, that expresses three latency-associated antigens and Ag85A was constructed. In murine models, the doses, titers, and inoculation sites of SeV986A were optimized, and its immunogenicity in BCG-primed and BCG-naive mice were determined. Enhanced immune protection against the challenge was shown in both acute-infection and latent-infection murine models. The expression levels of several T-cell exhaustion markers were significantly lower in the SeV986A-vaccinated group, suggesting that the expression of latency-associated antigens inhibited the T-cell exhaustion process in LTBI infection. Hence, the multistage quarter-antigenic SeV986A vaccine holds considerable promise as a novel post-exposure prophylaxis vaccine against tuberculosis.

Keywords

References

  1. Crit Rev Microbiol. 2017 Mar;43(2):133-141 [PMID: 27800700]
  2. Infect Immun. 2009 Dec;77(12):5486-95 [PMID: 19752037]
  3. J Infect Dis. 2002 Feb 1;185(3):401-4 [PMID: 11807725]
  4. J Bacteriol. 2002 Oct;184(19):5479-90 [PMID: 12218036]
  5. PLoS Pathog. 2012 Feb;8(2):e1002464 [PMID: 22363214]
  6. Virology. 2022 Jan;566:56-59 [PMID: 34864488]
  7. Expert Rev Vaccines. 2011 Oct;10(10):1393-5 [PMID: 21988304]
  8. Clin Dev Immunol. 2011;2011:814943 [PMID: 21234341]
  9. J Infect Dis. 2018 Apr 11;217(9):1491-1503 [PMID: 29373700]
  10. Expert Rev Respir Med. 2021 Jul;15(7):899-910 [PMID: 33302729]
  11. Nature. 1999 Jul 15;400(6741):269-71 [PMID: 10421369]
  12. Vaccine. 2004 Aug 13;22(23-24):3182-6 [PMID: 15297072]
  13. Eur Respir J. 2019 Sep 12;54(3): [PMID: 31221810]
  14. BMJ. 2018 Aug 23;362:k2738 [PMID: 30139910]
  15. Front Microbiol. 2021 Oct 22;12:745592 [PMID: 34745048]
  16. J Infect. 2019 Apr;78(4):275-280 [PMID: 30528871]
  17. Lancet Infect Dis. 2022 Dec;22(12):e359-e369 [PMID: 35636446]
  18. Lancet. 2000 Dec 23-30;356(9248):2133-8 [PMID: 11191539]
  19. Hum Vaccin Immunother. 2021 Feb 1;17(2):554-559 [PMID: 32750273]
  20. Lancet Infect Dis. 2018 Oct;18(10):1077-1087 [PMID: 30174209]
  21. Infect Immun. 2020 Jun 22;88(7): [PMID: 32094248]
  22. Front Immunol. 2022 Jun 23;13:895020 [PMID: 35812383]
  23. N Engl J Med. 2021 Dec 9;385(24):2271-2280 [PMID: 34879450]
  24. Front Immunol. 2018 Aug 03;9:1796 [PMID: 30123219]
  25. Front Immunol. 2022 Aug 26;13:959656 [PMID: 36091032]
  26. Expert Rev Vaccines. 2015;14(12):1573-85 [PMID: 26517361]
  27. Tuberculosis (Edinb). 2010 Jul;90(4):236-44 [PMID: 20541977]
  28. NPJ Vaccines. 2023 Feb 23;8(1):25 [PMID: 36823425]
  29. Lancet Infect Dis. 2020 Mar;20(3):e28-e37 [PMID: 32014117]
  30. Lancet Infect Dis. 2019 Jan;19(1):19-20 [PMID: 30587284]
  31. Mol Ther. 2017 May 3;25(5):1222-1233 [PMID: 28342639]
  32. Vaccine. 2015 Sep 22;33(39):5035-41 [PMID: 26319069]
  33. Immunol Res. 2016 Feb;64(1):64-72 [PMID: 26111521]
  34. Lancet Respir Med. 2021 Apr;9(4):373-386 [PMID: 33306991]
  35. ACS Infect Dis. 2020 Feb 14;6(2):272-280 [PMID: 31815418]
  36. Am J Respir Crit Care Med. 2000 Apr;161(4 Pt 2):S221-47 [PMID: 10764341]
  37. Lancet. 2006 Apr 8;367(9517):1173-80 [PMID: 16616560]
  38. Nat Commun. 2023 Mar 6;14(1):1138 [PMID: 36878897]
  39. Clin Infect Dis. 2014 Feb;58(4):470-80 [PMID: 24336911]
  40. Expert Rev Vaccines. 2018 Jan;17(1):31-44 [PMID: 29148853]
  41. J Virol. 2000 Jul;74(14):6564-9 [PMID: 10864670]
  42. J Virol. 2003 Sep;77(17):9710-5 [PMID: 12915583]
  43. Nat Commun. 2021 Nov 22;12(1):6774 [PMID: 34811370]
  44. N Engl J Med. 2018 Aug 2;379(5):440-453 [PMID: 30067931]
  45. Sci Transl Med. 2010 Oct 13;2(53):53ra74 [PMID: 20944089]
  46. Microorganisms. 2021 Nov 28;9(12): [PMID: 34946062]
  47. Nat Rev Microbiol. 2009 Dec;7(12):845-55 [PMID: 19855401]
  48. Nat Commun. 2023 Apr 18;14(1):2175 [PMID: 37072397]
  49. J Mol Med (Berl). 2019 Dec;97(12):1685-1694 [PMID: 31786669]
  50. Front Immunol. 2023 Aug 15;14:1238586 [PMID: 37654500]
  51. Pathogens. 2022 Sep 26;11(10): [PMID: 36297158]
  52. J Clin Invest. 2012 Jan;122(1):303-14 [PMID: 22133873]
  53. Infect Immun. 2012 Sep;80(9):3018-33 [PMID: 22689819]
  54. Nat Med. 2011 Feb;17(2):189-94 [PMID: 21258338]
  55. J Bacteriol. 2002 Jul;184(13):3485-91 [PMID: 12057942]
  56. Biomedicines. 2022 Oct 29;10(11): [PMID: 36359269]
  57. Microbes Infect. 2006 Jul;8(8):2052-60 [PMID: 16931093]

MeSH Term

Humans
Animals
Mice
Latent Tuberculosis
Sendai virus
BCG Vaccine
Antigens, Bacterial
Tuberculosis
Mycobacterium tuberculosis
Vaccines, Synthetic

Chemicals

BCG Vaccine
Antigens, Bacterial
Vaccines, Synthetic

Word Cloud

Created with Highcharts 10.0.0vaccineantigenstuberculosisinfectionlatency-associatedlatentLTBISendaivirusimmuneprotectionSeV986AmultistageactiveconstructednovelrecombinantacutethreemicemurinemodelsexpressionT-cellexhaustionpost-exposureprophylaxisOne-quarterworld'spopulationinfectedinitialexposureimmune-competentpersonsdevelopasymptomaticdiseasescreatesextensivereservoirriskdevelopingPreviouslySeV-vectoredencodingtwodominantelicitedstudyninescreenedpotentialsupplementarycandidateRv2029cRv2028cRv3126cselectedbasedimmune-therapeuticeffectelevatedresponseshumanpopulationsSeV-vectoredtermedexpressesAg85AdosestitersinoculationsitesoptimizedimmunogenicityBCG-primedBCG-naivedeterminedEnhancedchallengeshownacute-infectionlatent-infectionlevelsseveralmarkerssignificantlylowerSeV986A-vaccinatedgroupsuggestinginhibitedprocessHencequarter-antigenicholdsconsiderablepromiseincorporatinginducesBCGSuberculosis

Similar Articles

Cited By