Midbrain node for context-specific vocalisation in fish.

Eric R Schuppe, Irene Ballagh, Najva Akbari, Wenxuan Fang, Jonathan T Perelmuter, Caleb H Radtke, Margaret A Marchaterre, Andrew H Bass
Author Information
  1. Eric R Schuppe: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
  2. Irene Ballagh: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
  3. Najva Akbari: Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
  4. Wenxuan Fang: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
  5. Jonathan T Perelmuter: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
  6. Caleb H Radtke: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
  7. Margaret A Marchaterre: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
  8. Andrew H Bass: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA. ahb3@cornell.edu. ORCID

Abstract

Vocalizations communicate information indicative of behavioural state across divergent social contexts. Yet, how brain regions actively pattern the acoustic features of context-specific vocal signals remains largely unexplored. The midbrain periaqueductal gray (PAG) is a major site for initiating vocalization among mammals, including primates. We show that PAG neurons in a highly vocal fish species (Porichthys notatus) are activated in distinct patterns during agonistic versus courtship calling by males, with few co-activated during a non-vocal behaviour, foraging. Pharmacological manipulations within vocally active PAG, but not hindbrain, sites evoke vocal network output to sonic muscles matching the temporal features of courtship and agonistic calls, showing that a balance of inhibitory and excitatory dynamics is likely necessary for patterning different call types. Collectively, these findings support the hypothesis that vocal species of fish and mammals share functionally comparable PAG nodes that in some species can influence the acoustic structure of social context-specific vocal signals.

References

  1. Physiol Behav. 2023 May 1;263:114131 [PMID: 36796532]
  2. Annu Rev Neurosci. 1985;8:125-70 [PMID: 3885827]
  3. J Comp Neurol. 2020 Dec 15;528(18):3451-3478 [PMID: 32361985]
  4. J Neurosci. 1994 Jul;14(7):4025-39 [PMID: 8027760]
  5. Nat Commun. 2020 Jan 17;11(1):369 [PMID: 31953401]
  6. J Exp Biol. 2014 Jul 1;217(Pt 13):2377-89 [PMID: 24737759]
  7. Neurosci Biobehav Rev. 2002 Mar;26(2):235-58 [PMID: 11856561]
  8. J Comp Neurol. 2002 Jul 1;448(3):298-322 [PMID: 12115710]
  9. Brain Struct Funct. 2018 Jun;223(5):2181-2196 [PMID: 29423637]
  10. Physiology (Bethesda). 2016 Nov 1;31(6):442-451 [PMID: 27708050]
  11. Elife. 2020 Dec 29;9: [PMID: 33372655]
  12. J Comp Neurol. 1976 Feb 15;165(4):457-86 [PMID: 1262540]
  13. J Neurophysiol. 1995 Jun;73(6):2602-7 [PMID: 7666168]
  14. J Neurosci. 2013 Nov 27;33(48):18775-80 [PMID: 24285884]
  15. Exp Brain Res. 1986;63(3):596-606 [PMID: 3758271]
  16. iScience. 2019 Sep 27;19:1189-1201 [PMID: 31542702]
  17. J Comp Neurol. 2010 Feb 1;518(3):366-88 [PMID: 19950256]
  18. Nat Commun. 2022 Oct 25;13(1):6089 [PMID: 36284092]
  19. J Comp Neurol. 2016 Jun 1;524(8):1540-57 [PMID: 26235936]
  20. Front Behav Neurosci. 2019 May 10;13:60 [PMID: 31133827]
  21. Trends Neurosci. 2016 Dec;39(12):813-829 [PMID: 27884462]
  22. J Voice. 1996 Mar;10(1):23-38 [PMID: 8653176]
  23. Brain Behav Evol. 1991;38(4-5):240-54 [PMID: 1777806]
  24. Nat Neurosci. 1999 Dec;2(12):1120-4 [PMID: 10570490]
  25. J Comp Neurol. 2019 Jun 1;527(8):1362-1377 [PMID: 30620047]
  26. Nat Commun. 2011 Jun 14;2:346 [PMID: 21673667]
  27. Neuron. 2019 Aug 7;103(3):459-472.e4 [PMID: 31204083]
  28. Nature. 2021 May;593(7857):108-113 [PMID: 33790464]
  29. J Fish Biol. 2009 Jan;74(1):18-36 [PMID: 20735522]
  30. J Acoust Soc Am. 2001 Jun;109(6):2934-43 [PMID: 11425135]
  31. Nature. 2011 Feb 10;470(7333):221-6 [PMID: 21307935]
  32. J Exp Biol. 2014 Apr 1;217(Pt 7):1046-57 [PMID: 24265429]
  33. J Neurosci. 2020 Feb 12;40(7):1549-1559 [PMID: 31911461]
  34. J Comp Neurol. 2013 Mar 1;521(4):791-812 [PMID: 22826153]
  35. Neurosci Lett. 1993 Apr 2;152(1-2):5-8 [PMID: 8100054]
  36. J Comp Neurol. 2020 Feb 15;528(3):433-452 [PMID: 31469908]
  37. Annu Rev Neurosci. 2013 Jul 8;36:489-517 [PMID: 23750515]
  38. J Neurosci. 2002 May 15;22(10):RC223 [PMID: 12006605]
  39. Neuroscience. 2004;123(1):53-60 [PMID: 14667441]
  40. J Neurosci. 2022 Nov 2;42(44):8252-8261 [PMID: 36113990]
  41. Nature. 2000 Feb 17;403(6771):769-72 [PMID: 10693805]
  42. Curr Biol. 2016 Oct 10;26(19):2681-2689 [PMID: 27666972]
  43. Neuropsychopharmacology. 2019 Apr;44(5):859-868 [PMID: 30610191]
  44. J Comp Neurol. 2022 Apr;530(6):903-922 [PMID: 34614539]
  45. Behav Brain Res. 2007 Sep 4;182(2):308-14 [PMID: 17173983]
  46. Nat Methods. 2022 Dec;19(12):1634-1641 [PMID: 36344832]
  47. Trends Neurosci. 2020 Feb;43(2):115-126 [PMID: 31955902]
  48. Behav Brain Res. 2022 Apr 9;423:113745 [PMID: 35033611]
  49. Nature. 2014 May 15;509(7500):325-30 [PMID: 24828191]
  50. Cell Rep. 2019 Jul 16;28(3):616-624.e5 [PMID: 31315042]
  51. Neurosci Lett. 2003 Apr 10;340(2):111-4 [PMID: 12668249]
  52. Front Comput Neurosci. 2013 Nov 22;7:169 [PMID: 24319426]
  53. iScience. 2020 Nov 16;23(12):101804 [PMID: 33299974]
  54. J Neurobiol. 1990 Dec;21(8):1155-68 [PMID: 2273398]
  55. J Comp Neurol. 2022 Aug;530(12):2075-2099 [PMID: 35385140]
  56. J Neurophysiol. 1994 Sep;72(3):1337-56 [PMID: 7807216]
  57. J Chem Neuroanat. 2014 Mar;56:13-34 [PMID: 24418093]
  58. J Voice. 2021 Sep;35(5):804.e9-804.e25 [PMID: 32147316]
  59. J Comp Neurol. 2014 Sep 1;522(13):2887-927 [PMID: 24715479]
  60. J Comp Neurol. 2017 Nov 1;525(16):3514-3528 [PMID: 28726311]
  61. Elife. 2022 May 31;11: [PMID: 35639093]
  62. Neuroreport. 1998 May 11;9(7):1607-10 [PMID: 9631474]
  63. J Voice. 2009 Jan;23(1):1-10 [PMID: 18207362]
  64. J Comp Neurol. 2003 Jul 14;462(1):1-14 [PMID: 12761820]
  65. J Neurophysiol. 2006 Jul;96(1):71-85 [PMID: 16598068]

Grants

  1. IOS1656664/NSF | BIO | Division of Integrative Organismal Systems (IOS)

MeSH Term

Animals
Male
Vocalization, Animal
Brain
Periaqueductal Gray
Batrachoidiformes
Mammals

Word Cloud

Created with Highcharts 10.0.0vocalPAGcontext-specificfishspeciessocialacousticfeaturessignalsmammalsagonisticcourtshipVocalizationscommunicateinformationindicativebehaviouralstateacrossdivergentcontextsYetbrainregionsactivelypatternremainslargelyunexploredmidbrainperiaqueductalgraymajorsiteinitiatingvocalizationamongincludingprimatesshowneuronshighlyPorichthysnotatusactivateddistinctpatternsversuscallingmalesco-activatednon-vocalbehaviourforagingPharmacologicalmanipulationswithinvocallyactivehindbrainsitesevokenetworkoutputsonicmusclesmatchingtemporalcallsshowingbalanceinhibitoryexcitatorydynamicslikelynecessarypatterningdifferentcalltypesCollectivelyfindingssupporthypothesissharefunctionallycomparablenodescaninfluencestructureMidbrainnodevocalisation

Similar Articles

Cited By