Aquatic insects for monitoring the health status of riverine potholes: A case study in Chalakudy river basin, Kerala, India.

Puthukkampurath Athulya, Puthiyarambath Vishnu Prasad, Rajathy Sivalingam, Thavalathadathil Velayudhan Sajeev, Chelakkal Sukumaran Ratheesh Kumar, Reghu Nandanan Pillai Syamkumar
Author Information
  1. Puthukkampurath Athulya: Cochin University of Science and Technology, Kochi, Kerala, India. athulya1995@cusat.ac.in.
  2. Puthiyarambath Vishnu Prasad: Cochin University of Science and Technology, Kochi, Kerala, India.
  3. Rajathy Sivalingam: Cochin University of Science and Technology, Kochi, Kerala, India.
  4. Thavalathadathil Velayudhan Sajeev: Kerala Forest Research Institute, Peechi, Kerala, India.
  5. Chelakkal Sukumaran Ratheesh Kumar: Cochin University of Science and Technology, Kochi, Kerala, India.
  6. Reghu Nandanan Pillai Syamkumar: Cochin University of Science and Technology, Kochi, Kerala, India.

Abstract

Potholes are microhabitats in riverine ecosystems that substantially contribute to the unique regional faunal diversity and community composition. Investigations on the ecological status of potholes in riverine habitats are very scanty. The present work is of utmost importance, particularly as a pioneering study to evaluate the health status of riverine potholes using aquatic insects as potential biological indicators. Samples of water and aquatic insects were collected and analyzed during the pre-monsoon season from February 2022 to May 2022 in the potholes at Athirappilly and the Ezhattumugham regions of the Chalakudy river basin. The present study identified 208 individuals represented by 15 families in the potholes at Athirappilly, whereas 94 individuals belong to 10 families at Ezhattumugham. The computation of water quality parameters and benthic metrics revealed a significant variation between the stations. Spearman correlation analysis revealed that the water temperature, electrical conductivity, dissolved oxygen concentration, and biochemical oxygen demand were influencing the distribution of aquatic insects in the potholes. Families such as Perlidae, Ephemeridae, Baetidae, Stenopsychidae, and Hydropsychidae (sensitive families) reported from the well-oxygenated potholes at Athirappilly, where the water temperature and biochemical oxygen demand were minimum. The significantly high percentage composition of Ephemeroptera, Plecoptera, and Trichoptera taxa and a low family biotic index value indicate good health condition of the potholes at Athirappilly. In contrast, the low percentage composition of Ephemeroptera, Plecoptera, and Trichoptera taxa and high family biotic index values, with the abundance of tolerant families (Micronectidae, Caenidae, and Chironomidae), reflect the impact of organic pollution at Ezhattumugham.

Keywords

References

  1. Abhijna, U. G., Ratheesh, R., & Kumar, A. B. (2013). Distribution and diversity of aquatic insects of Vellayani lake in Kerala. Journal of Environmental Biology, 34(3), 605. [PMID: 24617149]
  2. Adu, B. W., & Oyeniyi, E. A. (2019). Water quality parameters and aquatic insect diversity in Aahoo stream, southwestern Nigeria. The Journal of Basic and Applied Zoology, 80, 1–9. [DOI: 10.1186/s41936-019-0085-3]
  3. Anish, A. U., Baiju, K. R., Girish, G., Ambili, V., & Thrivikramji, K. P. (2021). Geomorphic Evolution of Chalakudy River Basin, South Western Ghat, India: Insights from Drainage Morphometric Indices. Journal of Indian Geomorphology, 2320–0731.
  4. Anusa, A., Ndagurwa, H. G. T., & Magadza, C. H. D. (2012). The influence of pool size on species diversity and water chemistry in temporary rock pools on Domboshawa Mountain, northern Zimbabwe. African Journal of Aquatic Science, 37(1), 89–99. [DOI: 10.2989/16085914.2012.666378]
  5. APHA. (2017). Standard methods for the examination of water and wastewater (23rd ed.). Washington DC: American Public Health Association, American Water Works Association, and Water Environment Federation.
  6. Arimoro, F. O., Odume, O. N., Uhunoma, S. I., & Edegbene, A. O. (2015). Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream. Environmental Monitoring and Assessment, 187, 1–14. [DOI: 10.1007/s10661-014-4251-2]
  7. Azmi, W. A., Hussin, N. H., & Amin, N. M. (2018). Monitoring of water quality using aquatic insects as biological indicators in three streams of Terengganu. Journal of Sustainability Science and Management, 13(1), 67–76.
  8. Bachan, K.H.A., Riparian vegetation along the middle and lower zones of the Chalakkudyriver. Iringalakkuda (India): Limnological Association of Kerala. 2003 (Project 26/2000 Sponsored by Kerala Research Programme on Local Level Development, CDS, Thiruvananthapuram).
  9. Bakonyi, G., Vásárhelyi, T., & Szabó, B. (2022). Pollution impacts on water bugs (Nepomorpha, Gerromorpha): State of the art and their biomonitoring potential. Environmental Monitoring and Assessment, 194(4), 301. [PMID: 35344112]
  10. Bera, B., Bhattacharjee, S., Chamling, M., Ghosh, A., Sengutpa, N., & Ghosh, S. (2021). Relationship between diameter and depth of potholes controlled by lithology and structure in the Rarh region of India. Current Science, 121(5), 697–703. [DOI: 10.18520/cs/v121/i5/697-703]
  11. Blaustein, L., & Schwartz, S. S. (2001). Why study ecology in temporary pools? Israel Journal of Zoology, 47(4), 303–312. [DOI: 10.1560/CKMU-Q2PM-HTGC-P9C8]
  12. Bose, C. N., Binoy, C. F., & Kakkassery, F. K. (2021). On the diversity and abundance of riparian odonate fauna (Insecta) of the midstream Chalakkudy River, Kerala India. Journal of Threatened Taxa, 13(8), 19053–19059. [DOI: 10.11609/jott.7328.13.8.19053-19059]
  13. Brendonck, L., Jocque, M., Hulsmans, A., & Vanschoenwinkel, B. (2010). Pools" on the rocks": Freshwater rock pools as model system in ecological and evolutionary research. Limnetica, 29(1), 0025–0040.
  14. Chakravarty, T., & Gupta, S. (2023). Spatio-temporal distribution of aquatic insects and functional feeding groups in different stretches of River Jatinga, south Assam, India. Acta Ecologica Sinica.
  15. Chen, P. P., Nieser, N., & Lapidin, J. (2015). A review of Bornean Micronectidae (Hemiptera, Heteroptera, Nepomorpha) with descriptions of two new species from Sabah Malaysia. Zookeys, 501, 27. [DOI: 10.3897/zookeys.501.9416]
  16. Cranston, P. S. (1990). Biomonitoring and invertebrate taxonomy. Environmental Monitoring and Assessment, 14, 265–273. [PMID: 24243328]
  17. De Faria, A. P. J., Ligeiro, R., Callisto, M., & Juen, L. (2017). Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia, 802, 39–51. [DOI: 10.1007/s10750-017-3238-8]
  18. Dhali, M. K., & Biswas, M. (2017). Geo-hydrological response to pothole formation: A quantitative study of Kharsoti River, India. Modeling Earth Systems and Environment, 3, 1–11. [DOI: 10.1007/s40808-017-0280-5]
  19. Dhali, M. K., & Biswas, M. (2019). MCA on mechanism of river bed potholes growth: A study of middle Subarnarekha River basin, South East Asia. Environment, Development and Sustainability, 21(2), 935–959. [DOI: 10.1007/s10668-017-0069-8]
  20. Duka, S., Pepa, B., Keci, E., Paparisto, A., & Lazo, P. (2017). Biomonitoring of water quality of the Osumi, Devolli, and Shkumbini rivers through benthic macroinvertebrates and chemical parameters. Journal of Environmental Science and Health, Part A, 52(5), 471–478. [DOI: 10.1080/10934529.2016.1274167]
  21. Eitam, A., Blaustein, L., Van Damme, K., Dumont, H. J., & Martens, K. (2004). Crustacean species richness in temporary pools: Relationships with habitat traits. Hydrobiologia, 525(1), 125–130. [DOI: 10.1023/B]
  22. Faria, A. P. J., Paiva, C. K. S., Calvão, L. B., Cruz, G. M., & Juen, L. (2021). Response of aquatic insects to an environmental gradient in Amazonian streams. Environmental Monitoring and Assessment, 193, 1–12. [DOI: 10.1007/s10661-021-09553-6]
  23. Fierro, P., Bertrán, C., Tapia, J., Hauenstein, E., Peña-Cortés, F., Vergara, C., Cerna, C., & Vargas-Chacoff, L. (2017). Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Science of the Total Environment, 609, 724–734. [PMID: 28763669]
  24. Gagne, C. (2017). Hydrology and Aquatic Invertebrate Communities of Riverine Rock Pools: Effects of Seasonality and the Penobscot River.
  25. Guellaf, A., El Alami, M., Kassout, J., Errochdi, S., Khadri, O., & Kettani, K. (2021). Diversity and ecology of aquatic insects (Ephemeroptera, Plecoptera and Trichoptera) in the Martil basin (Northwestern Morocco). Community Ecology, 22, 331–350. [DOI: 10.1007/s42974-021-00058-3]
  26. Hilsenhoff, W. L. (1988). Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society, 7(1), 65–68. [DOI: 10.2307/1467832]
  27. Jara, F. G. (2019). The impact of phenology on the interaction between a predaceous aquatic insect and larval amphibians in seasonal ponds. Hydrobiologia, 835(1), 49–61. [DOI: 10.1007/s10750-019-3928-5]
  28. Jocque, M., Riddoch, B. J., & Brendonck, L. (2007). Successional phases and species replacements in freshwater rock pools: Towards a biological definition of ephemeral systems. Freshwater Biology, 52(9), 1734–1744. [DOI: 10.1111/j.1365-2427.2007.01802.x]
  29. Jocque, M., Vanschoenwinkel, B., & Brendonck, L. U. C. (2010). Freshwater rock pools: A review of habitat characteristics, faunal diversity and conservation value. Freshwater Biology, 55(8), 1587–1602. [DOI: 10.1111/j.1365-2427.2010.02402.x]
  30. Jooste, M. L., Samways, M. J., & Deacon, C. (2020). Fluctuating pond water levels and aquatic insect persistence in a drought-prone Mediterranean-type climate. Hydrobiologia, 847(5), 1315–1326. [DOI: 10.1007/s10750-020-04186-1]
  31. Kanhaiya, S., Singh, S., Singh, C. K., & Srivastava, V. K. (2019). Pothole: A unique geomorphological feature from the bedrocks of Ghaghghar River, Son valley, India. Geology, Ecology, and Landscapes, 3(4), 258–268. [DOI: 10.1080/24749508.2018.1558018]
  32. Kasangaki, A., Babaasa, D., Efitre, J., McNeilage, A., & Bitariho, R. (2006). Links between anthropogenic perturbations and benthic macroinvertebrate assemblages in Afromontane Forest streams in Uganda. Hydrobiologia, 563, 231–245. [DOI: 10.1007/s10750-005-0009-8]
  33. Kunlasak, K., Chitmanat, C., Whangchai, N., Promya, J., & Lebel, L. (2013). Relationships of dissolved oxygen with chlorophyll-a and phytoplankton composition in tilapia ponds. International Journal of Geosciences, 4(05), 46. [DOI: 10.4236/ijg.2013.45B008]
  34. Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25, 1–18. [DOI: 10.18637/jss.v025.i01]
  35. Lima, M., Firmino, V. C., de Paiva, C. K. S., Juen, L., & Brasil, L. S. (2022). Land use changes disrupt streams and affect the functional feeding groups of aquatic insects in the Amazon. Journal of Insect Conservation, 26(2), 137–148. [DOI: 10.1007/s10841-022-00375-6]
  36. Liu, W., Xu, M., Zhao, N., Zhou, X., Pan, B., Tian, S., & Lei, F. (2019). River health assessment of the Yellow River source region, Qinghai-Tibetan Plateau, China, based on tolerance values of macroinvertebrates. Environmental Science and Pollution Research, 26, 10251–10262. [PMID: 30761487]
  37. Mary, R. M., Nirmala, T., & Rose, M. D. (2015). Diversity and distribution of aquatic insects in Sothuparai Reservoir at Periakulam, Theni district, Tamil Nadu, India. International Journal of Current Research and Review, 7, 10–15.
  38. Masese, F. O., Raburu, P. O., & Muchiri, M. (2009). A preliminary benthic macroinvertebrate index of biotic integrity (B-IBI) for monitoring the Moiben River, Lake Victoria Basin Kenya. African Journal of Aquatic Science, 34(1), 1–14. [DOI: 10.2989/AJAS.2009.34.1.1.726]
  39. Mebane, C. A. (2001). Testing bioassessment metrics: Macroinvertebrate, sculpin, and salmonid responses to stream habitat, sediment, and metals. Environmental Monitoring and Assessment, 67, 293–322. [PMID: 11334445]
  40. Morse, J. C., Yang, L., & Tian, L. (Eds.). (1994). Aquatic insects of China useful for monitoring water quality (No. 13). Hohai University Press.
  41. Muzaffar, S. B., & Colbo, M. H. (2002). The effects of sampling technique on the ecological characterization of shallow, benthic macroinvertebrate communities in two Newfoundland ponds. Hydrobiologia, 477, 31–39. [DOI: 10.1023/A]
  42. Nameer, P O., & Raghavan, R (2019). Impact on flood/ landslides on riverine biodiversity: Chalakudy river basin- Final report.
  43. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'hara, R.B., Simpson, G.L., Solymos, P. and Stevens, M.H.H. (2019). Package ‘vegan’. Community ecology package, version, 2(9).
  44. Padma, P., Sheela, V. S., Suryakumari, S., Jayalakshmy, K. V., Nair, S. M., & Kumar, N. C. (2014). Assessment of water quality of a river-dominated estuary with hydrochemical parameters: A statistical approach. Water Quality, Exposure and Health, 5, 197–214. [DOI: 10.1007/s12403-014-0115-9]
  45. Pinder, A. M., Halse, S. A., Shiel, R. J., & McRae, J. M. (2000). Granite outcrop pools in south-western Australia: Foci of diversification and refugia for aquatic invertebrates. Journal of the Royal Society of Western Australia, 83, 149.
  46. Priyanka, G. L., & Prasad, G. (2014). Diversity of aquatic insects (Ephemeroptera, Plecoptera, and Trichoptera) in Kallar stream and its tributaries. Journal of Aquatic Biology and Fisheries,493 to 499.
  47. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ .
  48. Ren, H., Yuan, X., Yue, J., Wang, X., & Liu, H. (2016). Potholes of Mountain River as biodiversity spots: Structure and dynamics of the benthic invertebrate community. Polish Journal of Ecology, 64(1), 70–83. [DOI: 10.3161/15052249PJE2016.64.1.007]
  49. Rosenberg, D. M., & Resh, V. H. (1993). Fresh water biomonitoring and benthic macroinvertebrates. Chapman and Hall.
  50. Sane, K., Thakkar, M. G., Chauhan, G., Aiyar, D., & Bhandari, S. (2020). Formation of potholes associated with bedrock gorges on Mesozoic sandstone of Khari River, Kachchh Mainland Western India. Open Journal of Geology, 10(2), 171–186. [DOI: 10.4236/ojg.2020.102010]
  51. Sharma, R., Kumar, A., Singh, N., & Sharma, K. (2021). Impact of seasonal variation on water quality of Hindon River: Physicochemical and biological analysis. Applied Sciences, 3, 1–11.
  52. Singmann, H., Bolker, B., Westfall, J., Aust, F., Ben-Shachar, M. S., & Højsgaard, S. (2020). Package afex: analysis of factorial experiments. R package version 0.27–2.
  53. Spencer, M., Blaustein, L., Schwartz, S. S., & Cohen, J. E. (1999). Species richness and the proportion of predatory animal species in temporary freshwater pools: Relationships with habitat size and permanence. Ecology Letters, 2(3), 157–166. [DOI: 10.1046/j.1461-0248.1999.00062.x]
  54. Subramanian, K. A., & Sivaramakrishnan, K. G. (2005). Habitat and microhabitat distribution of stream insect communities of the Western Ghats. Current Science, 976–987.
  55. Subramanian, K. A., & Sivaramakrishnan, K. G. (2007). Aquatic Insects for Biomonitoring Freshwater Ecosystems-A Methodology Manual. Ashoka Trust for Ecol-ogy and Environment (ATREE), Bangalore, India. 31pp
  56. Thomas, M. L., & Paul, P. T. (2015). An assessment of phytoplankton and physico-chemical characteristics of Chalakudy River, Kerala. International Journal of Advanced Life Sciences, 8(2), 197–203.
  57. Wahizatul, A. A., Long, S. H., & Ahmad, A. (2011). Composition and distribution of aquatic insect communities in relation to water quality in two freshwater streams of Hulu Terengganu, Terengganu. Journal of Sustainability Science and Management, 6(1), 148–155.
  58. Wang, J., & Zhang, Z. (2020). Phytoplankton, dissolved oxygen and nutrient patterns along a eutrophic river-estuary continuum: Observation and modeling. Journal of Environmental Management, 261, 110233. [PMID: 32148303]
  59. Witwisitpong, M., & On, P. T. (2015). Diversity and Distribution of Aquatic Insects in Streams of the Mae Klong Watershed, Western Thailand. Hindawi Publishing Corporation,Psyche,912451
  60. Xu, M., Wang, Z., Duan, X., & Pan, B. (2014). Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia, 729, 247–259. [DOI: 10.1007/s10750-013-1504-y]

MeSH Term

Humans
Animals
Ecosystem
Rivers
Environmental Monitoring
Insecta
Lepidoptera
Water Quality
India
Health Status
Ephemeroptera
Oxygen
Invertebrates

Chemicals

Oxygen

Word Cloud

Created with Highcharts 10.0.0potholesinsectsriverinehealthwaterAthirappillyfamiliescompositionstatusstudyaquaticEzhattumugham TheoxygenPotholespresent2022ChalakudyriverbasinindividualsmetricsrevealedtemperaturebiochemicaldemandhighpercentageEphemeropteraPlecopteraTrichopterataxalowfamilybioticindexAquaticmicrohabitatsecosystemssubstantiallycontributeuniqueregionalfaunaldiversitycommunityInvestigationsecologicalhabitatsscantyworkutmostimportanceparticularlypioneeringevaluateusingpotentialbiologicalindicatorsSamplescollectedanalyzedpre-monsoonseasonFebruaryMayregionsidentified208represented15whereas94belong10computationqualityparametersbenthicsignificantvariationstations SpearmancorrelationanalysiselectricalconductivitydissolvedconcentrationinfluencingdistributionFamiliesPerlidaeEphemeridaeBaetidaeStenopsychidaeHydropsychidaesensitivereportedwell-oxygenatedminimumsignificantlyvalueindicategoodconditioncontrastvaluesabundancetolerantMicronectidaeCaenidaeChironomidaereflectimpactorganicpollutionmonitoringpotholes:caseKeralaIndiaBenthicBiomonitoringRiverine

Similar Articles

Cited By