High isolation 16-port massive MIMO antenna based negative index metamaterial for 5G mm-wave applications.

Alya Ali Musaed, Samir Salem Al-Bawri, Wazie M Abdulkawi, Khaled Aljaloud, Zubaida Yusoff, Mohammad Tariqul Islam
Author Information
  1. Alya Ali Musaed: Space Science Centre, Climate Change Institute, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Malaysia.
  2. Samir Salem Al-Bawri: Space Science Centre, Climate Change Institute, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Malaysia. samir@ukm.edu.my.
  3. Wazie M Abdulkawi: Department of Electrical Engineering, Collegeof Engineering in Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
  4. Khaled Aljaloud: College of Engineering, Muzahimiyah Branch, King Saud University, 11451, Riyadh, Saudi Arabia.
  5. Zubaida Yusoff: Faculty of Engineering, Multimedia University, 63100, Cyberjaya, Selangor, Malaysia. zubaida@mmu.edu.my.
  6. Mohammad Tariqul Islam: Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600, Bangi, Selangor, Malaysia.

Abstract

A 16-port massive Multiple-Input-Multiple-Output (mMIMO) antenna system featuring a high gain and efficiency is proposed for millimeter-wave applications. The antenna system consists of 64 elements with a total size of 17 λo × 2.5λo, concerning the lowest frequency. Each 2 × 2 (radiating patch) subarray is designed to operate within the 25.5-29 GHz frequency range. The antenna's performance in terms of isolation, gain, and efficiency has been significantly improved by utilizing the proposed unique double and epsilon negative (DNG/ENG) metamaterials. The array elements are positioned on top of a Rogers RT5880 substrate, with ENG metamaterial unit cells interposed in between to mitigate coupling effects. Additionally, the DNG metamaterial reflector is positioned at the rear of the antenna to boost the gain. As a result, the metamaterial-based mMIMO antenna offers lower measured isolation reaching 25 dB, a maximum gain of 20 dBi and an efficiency of up to 99%. To further analyze the performance of the MIMO antenna, the diversity gain and enveloped correlation coefficient are discussed in relation to the MIMO parameters.

References

  1. Jijo, B. T. et al. A comprehensive survey of 5G mm-wave technology design challenges. Asian J. Res. Comput. Sci. 8(1), 1–20 (2021). [DOI: 10.9734/ajrcos/2021/v8i130190]
  2. Zhang, Y., Deng, J.-Y., Li, M.-J., Sun, D. & Guo, L.-X. A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas Wirel. Propag. Lett. 18(4), 747–751 (2019). [DOI: 10.1109/LAWP.2019.2901961]
  3. Chen, W.-J., & Lin, H.-H. LTE700/WWAN MIMO antenna system integrated with decoupling structure for isolation improvement. in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2014: IEEE, pp. 689–690.
  4. Tao, F., Wu, B., Xu, M., Chen, J. & Su, T. Compact dual-mode wideband MIMO filtering antenna array with high selectivity and improved isolation. Int. J. RF Microwave Comput. Aided Eng. 31(2), e22497 (2021). [DOI: 10.1002/mmce.22497]
  5. Yu, Y., Yi, L., Liu, X. & Gu, Z. Dual-frequency two-element antenna array with suppressed mutual coupling. Int. J. Antennas Propag. 2015, 912934 (2015).
  6. Ali, A. et al. Mutual coupling reduction through defected ground structure in circularly polarized, dielectric resonator-based MIMO antennas for sub-6 GHz 5G applications. Micromachines 13(7), 1082 (2022). [DOI: 10.3390/mi13071082]
  7. Khalid, M. et al. 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics 9(1), 71 (2020). [DOI: 10.3390/electronics9010071]
  8. Khalid, H., Khalid, M., Fatima, A., Khalid, N. 2 × 2 MIMO antenna with defected ground structure for mm-wave 5G applications. in 2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), 2019: IEEE, pp. 1–6.
  9. Rahman, M. M., Islam, M. S., Islam, M. T., Al-Bawri, S. S. & Yong, W. H. Metamaterial-based compact antenna with defected ground structure for 5G and beyond. Comput. Mater. Contin 72, 2383–2399 (2022).
  10. Sun, L., Li, Y., Zhang, Z. & Wang, H. Self-decoupled MIMO antenna pair with shared radiator for 5G smartphones. IEEE Trans. Antennas Propag. 68(5), 3423–3432 (2020). [DOI: 10.1109/TAP.2019.2963664]
  11. Farahani, M. et al. Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall. IEEE Antennas Wirel. Propag. Lett. 16, 2324–2327 (2017). [DOI: 10.1109/LAWP.2017.2717404]
  12. Tao, Z. et al. A millimeter-wave system of antenna array and metamaterial lens. IEEE Antennas Wirel. Propag. Lett. 15, 370–373 (2015). [DOI: 10.1109/LAWP.2015.2446500]
  13. Musaed, A. A., Al-Bawri, S. S., Islam, M. T., Al-Gburi, A. J. A. & Singh, M. J. Tunable compact metamaterial-based double-negative/near-zero index resonator for 6G terahertz wireless applications. Materials 15(16), 5608 (2022). [DOI: 10.3390/ma15165608]
  14. Al-Bawri, S. S. et al. Hexagonal shaped near zero index (NZI) metamaterial based MIMO antenna for millimeter-wave application. IEEE Access 8, 181003–181013 (2020). [DOI: 10.1109/ACCESS.2020.3028377]
  15. Tariq, S., Naqvi, S. I., Hussain, N. & Amin, Y. A metasurface-based MIMO antenna for 5G millimeter-wave applications. IEEE Access 9, 51805–51817 (2021). [DOI: 10.1109/ACCESS.2021.3069185]
  16. Murthy, N. Improved isolation metamaterial inspired mm-wave MIMO dielectric resonator antenna for 5G application. Progress Electromagn. Res. C 100, 247–261 (2020). [DOI: 10.2528/PIERC19112603]
  17. Musaed, A., Al-Bawri, S., Islam, M. & Alkadri, W. Parametric analysis of epsilon-negative (ENG) and near zero refractive index (NZRI) characteristics of extraordinary metamaterial for 5g millimetre-wave applications. IOP Conf. Ser.: Earth Environ. Sci. 1167(1), 012040 (2023). [DOI: 10.1088/1755-1315/1167/1/012040]
  18. Pérez, J. R. et al. Experimental analysis of concentrated versus distributed massive MIMO in an indoor cell at 3.5 GHz. Electronics 10(14), 1646 (2021). [DOI: 10.3390/electronics10141646]
  19. Ramadhan, L. M., Astuti, R. P., Nugroho, B. S. Simulation of design and analysis massive MIMO array microstrip rectangular patch dualband 3.5 GHz and 26 GHz for 5G communications. in 2019 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 2019: IEEE, pp. 28–32.
  20. Al-Bawri, S. S., Islam, M. T., Islam, M. S., Singh, M. J. & Alsaif, H. Massive metamaterial system-loaded MIMO antenna array for 5G base stations. Sci. Rep. 12(1), 14311 (2022). [DOI: 10.1038/s41598-022-18329-y]
  21. Luukkonen, O., Maslovski, S. I. & Tretyakov, S. A. A stepwise Nicolson–Ross–Weir-based material parameter extraction method. IEEE Antennas Wireless Propag. Lett. 10, 1295–1298 (2011). [DOI: 10.1109/LAWP.2011.2175897]
  22. Saxena, G., Awasthi, Y. & Jain, P. High isolation and high gain super-wideband (0.33-10 THz) MIMO antenna for THz applications. Optik 223, 165335 (2020). [DOI: 10.1016/j.ijleo.2020.165335]
  23. Tiwari, R. N., Singh, P., Kumar, P., & Kanaujia, B. K. High isolation 4-port UWB MIMO antenna with novel decoupling structure for high speed and 5G communication. in 2022 International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, pp. 336–339 (2022).
  24. Thakur, E., Jaglan, N. & Gupta, S. D. Design of compact triple band-notched UWB MIMO antenna with TVC-EBG structure. J. Electromagn. Waves Appl. 34(11), 1601–1615 (2020). [DOI: 10.1080/09205071.2020.1775136]
  25. El Hadri, D., Zakriti, A., Zugari, A., El Ouahabi, M. & El Aoufi, J. High isolation and ideal correlation using spatial diversity in a compact MIMO antenna for fifth-generation applications. Int. J. Antennas Propag. 2020, 2740920 (2020).
  26. Arshad, F., Ahmad, A., Amin, Y., Abbasi, M. A. B. & Choi, D.-Y. MIMO antenna array with the capability of dual polarization reconfiguration for 5G mm-wave communication. Sci. Rep. 12(1), 18298 (2022). [DOI: 10.1038/s41598-022-23163-3]
  27. Iffat Naqvi, S. et al. Integrated LTE and millimeter-wave 5G MIMO antenna system for 4G/5G wireless terminals. Sensors 20(14), 3926 (2020). [DOI: 10.3390/s20143926]
  28. Hussain, N. & Kim, N. Integrated microwave and mm-wave MIMO antenna module with 360 pattern diversity for 5G internet of things. IEEE Internet Things J. 9(24), 24777–24789 (2022). [DOI: 10.1109/JIOT.2022.3194676]
  29. Mahmoud, K. R. & Montaser, A. M. Synthesis of multi-polarised upside conical frustum array antenna for 5G mm-Wave base station at 28/38 GHz. IET Microw. Antennas Propag. 12(9), 1559–1569 (2018). [DOI: 10.1049/iet-map.2017.1138]

Word Cloud

Created with Highcharts 10.0.0antennagainefficiencyisolationmetamaterialMIMO16-portmassivemMIMOsystemproposedapplicationselementsfrequency25performancenegativepositionedMultiple-Input-Multiple-Outputfeaturinghighmillimeter-waveconsists64totalsize17λo × 25λoconcerninglowest2 × 2radiatingpatchsubarraydesignedoperatewithin5-29GHzrangeantenna'stermssignificantlyimprovedutilizinguniquedoubleepsilonDNG/ENGmetamaterialsarraytopRogersRT5880substrateENGunitcellsinterposedmitigatecouplingeffectsAdditionallyDNGreflectorrearboostresultmetamaterial-basedofferslowermeasuredreachingdBmaximum20dBi99%analyzediversityenvelopedcorrelationcoefficientdiscussedrelationparametersHighbasedindex5Gmm-wave

Similar Articles

Cited By