SMR peptide antagonizes biofilm formation.

Ming-Bo Huang, Dara Brena, Jennifer Y Wu, Martin Shelton, Vincent C Bond
Author Information
  1. Ming-Bo Huang: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA. ORCID
  2. Dara Brena: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA.
  3. Jennifer Y Wu: Columbia University School of International and Public Affairs, Columbia University, New York, New York, USA.
  4. Martin Shelton: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA.
  5. Vincent C Bond: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA.

Abstract

The emergence and international dissemination of multi-drug resistant () strains challenge current antibiotic-based therapies, representing an urgent threat to public health worldwide. In the U.S. alone, . infections are responsible for 11,000 deaths and 500,000 hospitalizations annually. Biofilm formation is a major contributor to antibiotic tolerance and resistance-induced delays in empirical therapy with increased infection severity, frequency, treatment failure, and mortality. Developing novel treatment strategies to prevent and disrupt biofilm formation is imperative. In this article, we test the Secretion Modification Region (SMR) peptides for inhibitory effects on resistant biofilm-forming capacity by targeting the molecular chaperone DnaK. The dose effect of SMR peptides on biofilm formation was assessed using microtiter plate methods and confocal microscopy. Interaction between the antagonist and DnaK was determined by immune precipitation with anti-Flag M2 Affinity and Western blot analysis. Increasing SMR peptide concentrations exhibited increasing blockade of biofilm formation with significant inhibition found at 18 µM, 36 µM, and 72 µM. This work supports the potential therapeutic benefit of SMR peptides in reducing biofilm viability and could improve the susceptibility to antimicrobial agents.IMPORTANCEThe development of anti-biofilm agents is critical to restoring bacterial sensitivity, directly combating the evolution of resistance, and overall reducing the clinical burden related to pervasive biofilm-mediated infections. Thus, in this study, the SMR peptide, a novel small molecule derived from the HIV Nef protein, was preliminarily explored for anti-biofilm properties. The SMR peptide was shown to effectively target the molecular chaperone DnaK and inhibit biofilm formation in a dose-dependent manner. These results support further investigation into the mechanism of SMR peptide-mediated biofilm formation and inhibition to benefit rational drug design and the identification of therapeutic targets.

Keywords

References

  1. Front Cell Infect Microbiol. 2023 Jan 05;12:1056912 [PMID: 36683682]
  2. Biochem J. 2006 Oct 1;399(1):1-7 [PMID: 16956326]
  3. Mediterr J Hematol Infect Dis. 2023 Mar 01;15(1):e2023016 [PMID: 36908866]
  4. J Chem Inf Model. 2016 Aug 22;56(8):1490-517 [PMID: 27447295]
  5. Front Microbiol. 2019 Apr 01;10:539 [PMID: 30988669]
  6. Biotechnol Bioeng. 2004 Dec 5;88(5):585-92 [PMID: 15470707]
  7. Pharmacotherapy. 2023 Aug;43(8):816-832 [PMID: 37133439]
  8. Antimicrob Agents Chemother. 2015 Jan;59(1):633-41 [PMID: 25403660]
  9. Mol Microbiol. 1998 Oct;30(2):295-304 [PMID: 9791175]
  10. Int J Med Microbiol. 2012 Nov;302(6):242-52 [PMID: 22748508]
  11. Pathogens. 2023 Jan 28;12(2): [PMID: 36839473]
  12. Int J Biol Macromol. 2019 Sep 15;137:151-159 [PMID: 31260773]
  13. Protein Pept Lett. 2014 Apr;21(4):407-12 [PMID: 24164259]
  14. iScience. 2022 Jan 05;25(2):103731 [PMID: 35098100]
  15. Front Microbiol. 2020 Sep 17;11:1779 [PMID: 33071991]
  16. Lancet. 2023 Dec 17;400(10369):2221-2248 [PMID: 36423648]
  17. PLoS One. 2012;7(12):e50927 [PMID: 23227221]
  18. Braz J Microbiol. 2021 Dec;52(4):1701-1718 [PMID: 34558029]
  19. Diagn Microbiol Infect Dis. 2020 Jul;97(3):115060 [PMID: 32417617]
  20. Antibiotics (Basel). 2023 Jan 12;12(1): [PMID: 36671358]
  21. Am J Clin Pathol. 1966 Apr;45(4):493-6 [PMID: 5325707]
  22. ACS Omega. 2023 Mar 07;8(11):9873-9888 [PMID: 36969455]
  23. J Biol Chem. 2013 Mar 8;288(10):7065-76 [PMID: 23341453]
  24. Amino Acids. 2016 Jan;48(1):269-80 [PMID: 26334348]
  25. Int J Mol Sci. 2023 Feb 03;24(3): [PMID: 36769319]
  26. Annu Rev Microbiol. 2021 Oct 8;75:719-739 [PMID: 34375543]
  27. Clin Microbiol Rev. 2015 Jul;28(3):603-61 [PMID: 26016486]
  28. J Struct Biol. 2004 Apr-May;146(1-2):79-89 [PMID: 15037239]
  29. Microbiol Res. 2023 Jun;271:127345 [PMID: 36889204]
  30. PLoS One. 2015 Apr 23;10(4):e0124563 [PMID: 25905464]
  31. Appl Microbiol Biotechnol. 2023 Feb;107(4):1373-1389 [PMID: 36635396]
  32. Biomaterials. 2023 Feb;293:121957 [PMID: 36549042]
  33. Biomed Res Int. 2014;2014:365272 [PMID: 24982871]
  34. ACS Chem Biol. 2014 Nov 21;9(11):2508-16 [PMID: 25148104]
  35. Molecules. 2023 Mar 14;28(6): [PMID: 36985607]
  36. N Engl J Med. 1998 Aug 20;339(8):520-32 [PMID: 9709046]
  37. J Biol Chem. 2014 Oct 17;289(42):28987-9000 [PMID: 25202009]
  38. Front Cell Infect Microbiol. 2014 Dec 23;4:178 [PMID: 25566513]
  39. Nat Rev Microbiol. 2016 Apr;14(5):320-30 [PMID: 27080241]
  40. Mil Med Res. 2021 Sep 9;8(1):48 [PMID: 34496967]
  41. Sci Rep. 2022 Aug 1;12(1):13204 [PMID: 35915218]
  42. Lab Med. 2015 Fall;46(4):277-84 [PMID: 26489671]
  43. J Dairy Res. 2023 Mar 13;:1-4 [PMID: 36911973]
  44. Braz J Microbiol. 2021 Dec;52(4):2031-2042 [PMID: 34251609]
  45. Lett Appl Microbiol. 2004;38(5):428-32 [PMID: 15059216]
  46. J Fungi (Basel). 2023 Jan 18;9(2): [PMID: 36836248]
  47. Microbiol Mol Biol Rev. 2000 Dec;64(4):847-67 [PMID: 11104821]
  48. Acta Microbiol Immunol Hung. 2023 Feb 14;70(1):61-72 [PMID: 36787135]
  49. Clin Microbiol Rev. 2010 Jul;23(3):616-87 [PMID: 20610826]
  50. J Biomed Mater Res A. 2009 Mar 15;88(4):1069-78 [PMID: 18404712]
  51. J Biol Chem. 2016 Mar 25;291(13):6967-81 [PMID: 26823468]
  52. Microbiology (Reading). 2007 Sep;153(Pt 9):3162-3173 [PMID: 17768259]
  53. Oncotarget. 2017 Feb 14;8(7):11302-11315 [PMID: 28076321]
  54. Chem Biol Drug Des. 2009 Oct;74(4):349-57 [PMID: 19694756]
  55. Antibiotics (Basel). 2019 May 02;8(2): [PMID: 31052511]
  56. Int J Mol Sci. 2023 Feb 07;24(4): [PMID: 36834695]
  57. Methods Mol Med. 2008;142:75-85 [PMID: 18437307]
  58. J Biol Chem. 1996 May 10;271(19):11236-46 [PMID: 8626673]
  59. Molecules. 2022 Feb 22;27(5): [PMID: 35268586]
  60. Chem Biol. 2011 Feb 25;18(2):210-21 [PMID: 21338918]
  61. Expert Rev Anti Infect Ther. 2015;13(12):1499-516 [PMID: 26646248]
  62. Int J Environ Res Public Health. 2021 Jul 16;18(14): [PMID: 34300053]
  63. J Mol Biol. 2018 Oct 12;430(20):3657-3684 [PMID: 30009771]
  64. Biomed Rep. 2016 May;4(5):528-534 [PMID: 27123243]
  65. Int J Mol Sci. 2020 Nov 17;21(22): [PMID: 33212950]
  66. Microbiol Spectr. 2023 Feb 14;11(1):e0280722 [PMID: 36472442]
  67. Microb Cell. 2020 Oct 05;7(12):312-322 [PMID: 33335921]
  68. J Biol Chem. 2004 Sep 3;279(36):37298-303 [PMID: 15201275]
  69. Bioorg Med Chem. 2017 Dec 15;25(24):6345-6352 [PMID: 29042222]
  70. Front Chem. 2019 Nov 28;7:824 [PMID: 31850313]
  71. Front Microbiol. 2020 Oct 16;11:582779 [PMID: 33178164]
  72. Antibiotics (Basel). 2020 Dec 23;10(1): [PMID: 33374551]
  73. Antibiotics (Basel). 2020 Sep 19;9(9): [PMID: 32961656]
  74. BMC Vet Res. 2023 Jan 14;19(1):10 [PMID: 36641476]

Grants

  1. R21 AI095150/NIAID NIH HHS
  2. U54 MD007588/NIMHD NIH HHS
  3. G12 MD007602/NIMHD NIH HHS

MeSH Term

Humans
Staphylococcus aureus
Methicillin-Resistant Staphylococcus aureus
Anti-Bacterial Agents
Staphylococcal Infections
Biofilms
Peptides
Molecular Chaperones
Microbial Sensitivity Tests

Chemicals

Anti-Bacterial Agents
Peptides
Molecular Chaperones

Word Cloud

Created with Highcharts 10.0.0SMRbiofilmformationpeptideDnaKpeptidesµMresistantinfections000treatmentnovelmolecularchaperoneinhibitiontherapeuticbenefitreducingagentsanti-biofilmbacterialproteinemergenceinternationaldisseminationmulti-drugstrainschallengecurrentantibiotic-basedtherapiesrepresentingurgentthreatpublichealthworldwideUSaloneresponsible11deaths500hospitalizationsannuallyBiofilmmajorcontributorantibiotictoleranceresistance-induceddelaysempiricaltherapyincreasedinfectionseverityfrequencyfailuremortalityDevelopingstrategiespreventdisruptimperativearticletestSecretionModificationRegioninhibitoryeffectsbiofilm-formingcapacitytargetingdoseeffectassessedusingmicrotiterplatemethodsconfocalmicroscopyInteractionantagonistdeterminedimmuneprecipitationanti-FlagM2AffinityWesternblotanalysisIncreasingconcentrationsexhibitedincreasingblockadesignificantfound183672worksupportspotentialviabilityimprovesusceptibilityantimicrobialIMPORTANCEThedevelopmentcriticalrestoringsensitivitydirectlycombatingevolutionresistanceoverallclinicalburdenrelatedpervasivebiofilm-mediatedThusstudysmallmoleculederivedHIVNefpreliminarilyexploredpropertiesshowneffectivelytargetinhibitdose-dependentmannerresultssupportinvestigationmechanismpeptide-mediatedrationaldrugdesignidentificationtargetsantagonizesStaphylococcusaureusheatshock

Similar Articles

Cited By

No available data.