Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats.

Ling-Ling Cui, Xi-Xi Wang, Han Liu, Fang Luo, Chen-Hong Li
Author Information
  1. Ling-Ling Cui: Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  2. Xi-Xi Wang: Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  3. Han Liu: The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.
  4. Fang Luo: Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  5. Chen-Hong Li: The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China. ORCID

Abstract

Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.

Keywords

References

  1. J Neurosci. 2022 Jul 6;42(27):5373-5388 [PMID: 35667849]
  2. Neuropharmacology. 2020 Jun 15;170:108052 [PMID: 32188569]
  3. Pain. 2018 May;159(5):919-928 [PMID: 29369967]
  4. J Clin Invest. 2021 Jul 15;131(14): [PMID: 34263737]
  5. Cell Rep. 2019 Oct 8;29(2):332-346.e5 [PMID: 31597095]
  6. J Physiol. 2013 May 15;591(10):2381-91 [PMID: 23420655]
  7. J Pain. 2009 May;10(5):447-85 [PMID: 19411059]
  8. Front Psychiatry. 2022 Apr 14;13:869544 [PMID: 35492735]
  9. Neuron. 2017 Jan 4;93(1):33-47 [PMID: 27989459]
  10. eNeuro. 2021 Jan 22;8(1): [PMID: 33188006]
  11. Int J Mol Sci. 2020 May 13;21(10): [PMID: 32414089]
  12. Sci Adv. 2019 Feb 20;5(2):eaat3210 [PMID: 30801002]
  13. PLoS One. 2017 May 10;12(5):e0177412 [PMID: 28489932]
  14. J Neurosci Res. 1993 Aug 1;35(5):459-67 [PMID: 8377220]
  15. J Neurosci. 2020 Sep 2;40(36):6888-6895 [PMID: 32727819]
  16. Nat Rev Neurosci. 2020 Jul;21(7):353-365 [PMID: 32440016]
  17. Nat Commun. 2021 Jul 6;12(1):4156 [PMID: 34230461]
  18. Neurosci Biobehav Rev. 2021 Dec;131:704-721 [PMID: 34624366]
  19. Pain Med. 2015 Oct;16 Suppl 1:S32-6 [PMID: 26461074]
  20. Science. 2017 Aug 4;357(6350):503-507 [PMID: 28774929]
  21. J Neurosci Methods. 1994 Jul;53(1):55-63 [PMID: 7990513]
  22. Br J Anaesth. 2014 Jun;112(6):991-1004 [PMID: 24829420]
  23. Physiol Rev. 2003 Jul;83(3):803-34 [PMID: 12843409]
  24. J Pain. 2017 Feb;18(2):188-199 [PMID: 27838497]
  25. Pain. 2022 Mar 1;163(3):e463-e475 [PMID: 34174041]
  26. Br J Anaesth. 2010 Feb;104(2):231-8 [PMID: 20031953]
  27. Curr Protoc. 2022 Jan;2(1):e339 [PMID: 35044725]
  28. Nat Neurosci. 2019 Oct;22(10):1659-1668 [PMID: 31501573]
  29. Neuron. 2017 Mar 22;93(6):1464-1479.e5 [PMID: 28334609]
  30. Curr Opin Anaesthesiol. 2017 Aug;30(4):458-465 [PMID: 28590258]
  31. Horm Behav. 2010 Jun;58(1):72-81 [PMID: 19786031]
  32. Exp Neurol. 2022 Aug;354:114101 [PMID: 35504346]
  33. Cell Rep. 2018 May 1;23(5):1301-1313 [PMID: 29719246]
  34. Cell. 2009 Oct 16;139(2):267-84 [PMID: 19837031]
  35. Pain. 2019 May;160(5):1208-1223 [PMID: 31009420]
  36. J Pain Symptom Manage. 2005 May;29(5 Suppl):S67-71 [PMID: 15907648]
  37. J Pain. 2022 Jun;23(6):1035-1050 [PMID: 35021116]
  38. Nat Commun. 2018 May 25;9(1):2069 [PMID: 29802289]
  39. J Neurosci. 2018 Sep 5;38(36):7761-7773 [PMID: 30054393]
  40. Neurosci Lett. 2017 Aug 10;655:7-13 [PMID: 28648456]
  41. Mol Neurobiol. 2019 Feb;56(2):1137-1166 [PMID: 29876878]
  42. eNeuro. 2017 Mar 24;4(1): [PMID: 28374004]
  43. Handb Behav Neurosci. 2020;26:101-113 [PMID: 33889063]
  44. Nat Neurosci. 2019 May;22(5):762-769 [PMID: 30962632]
  45. Anesth Analg. 2018 Jan;126(1):289-297 [PMID: 29135586]
  46. Sci Rep. 2019 Jul 1;9(1):9479 [PMID: 31263213]
  47. J Neurosci. 2007 Feb 14;27(7):1543-51 [PMID: 17301163]
  48. Mol Brain. 2023 Sep 15;16(1):66 [PMID: 37715263]
  49. J Neurosci. 1997 Oct 1;17(19):7252-66 [PMID: 9295372]
  50. Pain. 2019 Apr;160(4):805-823 [PMID: 30681984]
  51. Front Behav Neurosci. 2021 Dec 24;15:724030 [PMID: 35002645]
  52. ACS Chem Neurosci. 2018 Sep 19;9(9):2252-2261 [PMID: 29630339]
  53. J Mol Psychiatry. 2013 Jun 05;1(1):9 [PMID: 25408902]
  54. Prog Neurobiol. 2021 Jan;196:101891 [PMID: 32730859]
  55. eNeuro. 2019 Sep 25;6(5): [PMID: 31519696]
  56. Nat Commun. 2020 May 6;11(1):2221 [PMID: 32376858]
  57. Reg Anesth Pain Med. 2015 Nov-Dec;40(6):687-93 [PMID: 26469365]
  58. Curr Biol. 2007 Oct 23;17(20):R868-74 [PMID: 17956742]
  59. Cell Rep. 2021 Nov 9;37(6):109978 [PMID: 34758316]
  60. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2423-8 [PMID: 19171885]
  61. Anesthesiology. 2000 Feb;92(2):465-72 [PMID: 10691234]
  62. Nat Commun. 2018 Jul 13;9(1):2727 [PMID: 30006525]
  63. Nat Neurosci. 2013 Mar;16(3):332-9 [PMID: 23354330]
  64. Mol Neurobiol. 2023 May;60(5):2553-2571 [PMID: 36689134]
  65. Pain Physician. 2008 Mar;11(2 Suppl):S133-53 [PMID: 18443637]
  66. Science. 2017 Oct 27;358(6362):478-482 [PMID: 29074767]
  67. Cell Mol Neurobiol. 2023 Apr;43(3):1401-1412 [PMID: 35798932]
  68. Neuropharmacology. 2008 Jun;54(8):1264-70 [PMID: 18457849]
  69. J Neurosci. 2020 Oct 7;40(41):7837-7854 [PMID: 32958568]
  70. Neurosci Bull. 2021 Feb;37(2):229-241 [PMID: 33180308]
  71. Pain Res Manag. 2017;2017:8296501 [PMID: 29302197]
  72. Nature. 2010 Nov 11;468(7321):270-6 [PMID: 21068836]
  73. Trends Neurosci. 2013 Jun;36(6):343-52 [PMID: 23602194]
  74. Neuroscience. 2016 Jan 15;312:108-19 [PMID: 26548413]
  75. J Pharmacol Exp Ther. 2016 Oct;359(1):82-9 [PMID: 27451410]
  76. Sci Rep. 2020 Apr 23;10(1):6884 [PMID: 32327679]

MeSH Term

Rats
Male
Animals
Hyperalgesia
Analgesics, Opioid
Rats, Sprague-Dawley
Amygdala
Pain
Fentanyl
Prefrontal Cortex

Chemicals

Analgesics, Opioid
Fentanyl

Word Cloud

Created with Highcharts 10.0.0OIHCeLCILpainhyperalgesiainfralimbicmedialprefrontalcortexratsopioidmayexacerbatedknownopioid-inducedeffectiveneuralcircuitsamygdalaprojectionsfentanylmaleneuronsoptogeneticssynaptictransmissionpostsynapticcurrentsenhancedpathwaychemogeneticsoutputsRepeateduseanalgesicscauseparadoxicallyhindersclinicalinterventionsevereCurrentlylittleunderlyingmodulationPreviousstudiessuggestlaterocapsulardivisioncentralnucleuscriticallyinvolvedregulationpurposeclarifyrolefirstproducedmodelrepeatedsubcutaneousinjectionImmunofluorescencestainingrevealedc-Fos-positivesignificantlyincreasedrightsalinecontrolsusedcalcium/calmodulin-dependentproteinkinaseIIαCaMKIIαlabelingpatch-clamprecordingsexvivodetectfunctionalglutamatepyramidalshownexcitatoryeEPSCsinhibitoryeIPSCspaired-pulseratioPPRobservablyadministrationMoreoveroptogeneticactivationIL-CeLCdecreasedc-FosexpressionamelioratedmechanicalthermalcontrarysilencingactivatingCombinedelectrophysiologyresultsmightcorticalgainrelieveratherreasongenerationScalingneuromodulationstrategytreatProjectionsglutamatergicmediatesinducedAmygdala

Similar Articles

Cited By