Promote to protect: data-driven computational model of peer influence for vaccine perception.

Sayantari Ghosh, Saumik Bhattacharya, Shagata Mukherjee, Sujoy Chakravarty
Author Information
  1. Sayantari Ghosh: Department of Physics, NIT Durgapur, Durgapur, India. sayantari.ghosh@phy.nitdgp.ac.in.
  2. Saumik Bhattacharya: Department E and ECE, IIT Kharagpur, Kharagpur, India.
  3. Shagata Mukherjee: Centre for Social and Behaviour Change, Ashoka University, Delhi, India.
  4. Sujoy Chakravarty: School of Social Sciences, Jawaharlal Nehru University, New Delhi, India.

Abstract

Vaccine hesitancy and acceptance, driven by social influence, is usually explored by most researchers using exhaustive survey-based studies, which investigate public preferences, fundamental values, beliefs, barriers, and drivers through closed or open-ended questionnaires. Commonly used simple statistical tools do not do justice to the richness of this data. Considering the gradual development of vaccine acceptance in a society driven by multiple local/global factors as a compartmental contagion process, we propose a novel methodology where drivers and barriers of these dynamics are detected from survey participants' responses, instead of heuristic arguments. Applying rigorous natural language processing analysis to the survey responses of participants from India, who are from various socio-demographics, education, and perceptions, we identify and categorize the most important factors as well as interactions among people of different perspectives on COVID-19 vaccines. With a goal to achieve improvement in vaccine perception, we also analyze the resultant behavioral transitions through platforms of unsupervised machine learning and natural language processing to derive a compartmental contagion model from the data. Analysis of the model shows that positive peer influence plays a very important role and causes a bifurcation in the system that reflects threshold-sensitive dynamics.

References

  1. BMC Infect Dis. 2022 May 7;22(1):439 [PMID: 35525973]
  2. Diabetes Metab Syndr. 2021 Jan-Feb;15(1):331-336 [PMID: 33493852]
  3. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3682-7 [PMID: 22355142]
  4. Behav Brain Sci. 2022 Sep 05;46:e147 [PMID: 36059098]
  5. Bull World Health Organ. 2008 Feb;86(2):140-6 [PMID: 18297169]
  6. Nat Hum Behav. 2021 Dec;5(12):1629-1635 [PMID: 34112981]
  7. Science. 2021 Apr 9;372(6538):109 [PMID: 33833099]
  8. Nat Commun. 2022 Jul 1;13(1):3801 [PMID: 35778396]
  9. Sci Rep. 2020 Jul 6;10(1):11072 [PMID: 32632242]
  10. N Engl J Med. 2021 Aug 12;385(7):585-594 [PMID: 34289274]
  11. Am J Trop Med Hyg. 2020 Oct;103(4):1621-1629 [PMID: 32783794]
  12. Nat Hum Behav. 2021 Mar;5(3):337-348 [PMID: 33547453]
  13. PLoS One. 2017 Jul 7;12(7):e0180802 [PMID: 28686719]
  14. Health Commun. 2023 Jul;38(8):1697-1708 [PMID: 35067105]
  15. Nat Med. 2021 Aug;27(8):1338-1339 [PMID: 34272500]
  16. Nat Med. 2021 Feb;27(2):225-228 [PMID: 33082575]
  17. Psychol Med. 2020 Oct 19;:1-3 [PMID: 33070804]
  18. J Med Internet Res. 2021 Jun 11;23(6):e27632 [PMID: 34061757]
  19. Vaccine. 2015 Aug 14;33(34):4176-9 [PMID: 25896376]
  20. Curr Pediatr Rep. 2022;10(4):241-248 [PMID: 36245801]
  21. Vaccines (Basel). 2021 Feb 16;9(2): [PMID: 33669441]
  22. Vaccines (Basel). 2021 Jun 03;9(6): [PMID: 34204971]
  23. Nature. 1964 Oct 17;204:225-8 [PMID: 14212412]
  24. Brain Behav Immun Health. 2021 Dec;18:100375 [PMID: 34693366]
  25. Lancet Public Health. 2021 Apr;6(4):e210-e221 [PMID: 33556325]
  26. Nat Hum Behav. 2020 Dec;4(12):1285-1293 [PMID: 33122812]
  27. Philos Trans R Soc Lond B Biol Sci. 2014 May 12;369(1645):20130433 [PMID: 24821919]
  28. J Econ Behav Organ. 2023 May;209:533-546 [PMID: 37025424]

MeSH Term

Humans
COVID-19 Vaccines
Peer Influence
Vaccines
Educational Status
Perception
Vaccination

Chemicals

COVID-19 Vaccines
Vaccines

Word Cloud

Created with Highcharts 10.0.0influencevaccinemodelacceptancedrivenbarriersdriversdatafactorscompartmentalcontagiondynamicssurveyresponsesnaturallanguageprocessingimportantperceptionpeerVaccinehesitancysocialusuallyexploredresearchersusingexhaustivesurvey-basedstudiesinvestigatepublicpreferencesfundamentalvaluesbeliefsclosedopen-endedquestionnairesCommonlyusedsimplestatisticaltoolsjusticerichnessConsideringgradualdevelopmentsocietymultiplelocal/globalprocessproposenovelmethodologydetectedparticipants'insteadheuristicargumentsApplyingrigorousanalysisparticipantsIndiavarioussocio-demographicseducationperceptionsidentifycategorizewellinteractionsamongpeopledifferentperspectivesCOVID-19vaccinesgoalachieveimprovementalsoanalyzeresultantbehavioraltransitionsplatformsunsupervisedmachinelearningderiveAnalysisshowspositiveplaysrolecausesbifurcationsystemreflectsthreshold-sensitivePromoteprotect:data-drivencomputational

Similar Articles

Cited By (1)