Cavity-enhanced photoacoustic dual-comb spectroscopy.

Zhen Wang, Qinxue Nie, Haojia Sun, Qiang Wang, Simone Borri, Paolo De Natale, Wei Ren
Author Information
  1. Zhen Wang: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China. wangzhen@link.cuhk.edu.hk. ORCID
  2. Qinxue Nie: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.
  3. Haojia Sun: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.
  4. Qiang Wang: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China. wangqiang@ciomp.ac.cn. ORCID
  5. Simone Borri: CNR-INO-Istituto Nazionale di Ottica, and LENS-European Laboratory for Nonlinear Spectroscopy, 50019, Sesto Fiorentino, Italy. ORCID
  6. Paolo De Natale: CNR-INO-Istituto Nazionale di Ottica, and LENS-European Laboratory for Nonlinear Spectroscopy, 50019, Sesto Fiorentino, Italy.
  7. Wei Ren: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China. renwei@mae.cuhk.edu.hk. ORCID

Abstract

Photoacoustic dual-comb spectroscopy (DCS), converting spectral information in the optical frequency domain to the audio frequency domain via multi-heterodyne beating, enables background-free spectral measurements with high resolution and broad bandwidth. However, the detection sensitivity remains limited due to the low power of individual comb lines and the lack of broadband acoustic resonators. Here, we develop cavity-enhanced photoacoustic DCS, which overcomes these limitations by using a high-finesse optical cavity for the power amplification of dual-frequency combs and a broadband acoustic resonator with a flat-top frequency response. We demonstrate high-resolution spectroscopic measurements of trace amounts of CH, NH and CO in the entire telecommunications C-band. The method shows a minimum detection limit of 0.6 ppb CH at the measurement time of 100 s, corresponding to the noise equivalent absorption coefficient of 7 × 10cm. The proposed cavity-enhanced photoacoustic DCS may open new avenues for ultrasensitive, high-resolution, and multi-species gas detection with widespread applications.

References

  1. Opt Lett. 2018 May 1;43(9):2118-2121 [PMID: 29714760]
  2. Opt Lett. 2004 Jul 1;29(13):1542-4 [PMID: 15259740]
  3. Nat Commun. 2014 Oct 13;5:5192 [PMID: 25307936]
  4. Phys Chem Chem Phys. 2018 Nov 14;20(44):27849-27855 [PMID: 30398249]
  5. Opt Lett. 2019 Apr 15;44(8):1924-1927 [PMID: 30985776]
  6. Nat Commun. 2020 Jun 19;11(1):3152 [PMID: 32561738]
  7. Opt Lett. 2009 May 1;34(9):1330-2 [PMID: 19412262]
  8. Nat Commun. 2020 Aug 20;11(1):4164 [PMID: 32820155]
  9. Nat Commun. 2015 Feb 24;6:6299 [PMID: 25708922]
  10. Photoacoustics. 2020 Jan 10;18:100161 [PMID: 32021797]
  11. Light Sci Appl. 2017 Oct 20;6(10):e17076 [PMID: 30167208]
  12. Nature. 2013 Oct 17;502(7471):355-8 [PMID: 24132293]
  13. Opt Lett. 2020 Oct 1;45(19):5335-5338 [PMID: 33001887]
  14. Science. 2017 Jun 16;356(6343):1164-1168 [PMID: 28495879]
  15. Phys Rev Lett. 2015 Sep 4;115(10):103901 [PMID: 26382677]
  16. Nat Commun. 2022 Apr 21;13(1):2181 [PMID: 35449158]
  17. Opt Express. 2016 May 16;24(10):10424-34 [PMID: 27409866]
  18. Optica. 2016;3(4): [PMID: 34131580]
  19. Opt Express. 2013 Mar 25;21(6):7411-8 [PMID: 23546124]
  20. Nat Commun. 2017 May 31;8:15331 [PMID: 28561065]
  21. Opt Express. 2005 Oct 31;13(22):9029-38 [PMID: 19498938]
  22. Opt Express. 2010 Jul 19;18(15):15981-9 [PMID: 20720982]
  23. Nat Commun. 2023 Aug 18;14(1):5037 [PMID: 37596269]
  24. Science. 2016 Nov 4;354(6312):600-603 [PMID: 27738017]
  25. Photoacoustics. 2022 Sep 21;28:100403 [PMID: 36164583]
  26. Nat Commun. 2019 Jul 3;10(1):2938 [PMID: 31270325]

Grants

  1. 62005267/National Natural Science Foundation of China (National Science Foundation of China)
  2. 51776179/National Natural Science Foundation of China (National Science Foundation of China)
  3. 14209220/University Grants Committee (UGC)
  4. 14208221/University Grants Committee (UGC)
  5. GHP/129/20SZ/Innovation and Technology Commission (ITF)

Word Cloud

Created with Highcharts 10.0.0DCSfrequencydetectionphotoacousticdual-combspectroscopyspectralopticaldomainmeasurementspowerbroadbandacousticcavity-enhancedhigh-resolutionCHPhotoacousticconvertinginformationaudioviamulti-heterodynebeatingenablesbackground-freehighresolutionbroadbandwidthHoweversensitivityremainslimitedduelowindividualcomblineslackresonatorsdevelopovercomeslimitationsusinghigh-finessecavityamplificationdual-frequencycombsresonatorflat-topresponsedemonstratespectroscopictraceamountsNHCOentiretelecommunicationsC-bandmethodshowsminimumlimit06ppbmeasurementtime100 scorrespondingnoiseequivalentabsorptioncoefficient7×10cmproposedmayopennewavenuesultrasensitivemulti-speciesgaswidespreadapplicationsCavity-enhanced

Similar Articles

Cited By