Exploring the joint potential of inflammation, immunity, and receptor-based biomarkers for evaluating ME/CFS progression.

Uldis Berkis, Simons Svirskis, Angelika Krumina, Sabine Gravelsina, Anda Vilmane, Diana Araja, Zaiga Nora-Krukle, Modra Murovska
Author Information
  1. Uldis Berkis: Development and Project Department, Riga Stradins University, Riga, Latvia.
  2. Simons Svirskis: Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia.
  3. Angelika Krumina: Department of Infectology, Riga Stradins University, Riga, Latvia.
  4. Sabine Gravelsina: Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia.
  5. Anda Vilmane: Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia.
  6. Diana Araja: Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia.
  7. Zaiga Nora-Krukle: Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia.
  8. Modra Murovska: Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia.

Abstract

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition with no identified diagnostic biomarkers to date. Its prevalence is as high as 0.89% according to metastudies, with a quarter of patients bed- or home-bound, which presents a serious public health challenge. Investigations into the inflammation-immunity axis is encouraged by links to outbreaks and disease waves. Recently, the research of our group revealed that antibodies to beta2-adrenergic (anti-β2AdR) and muscarinic acetylcholine (anti-M4) receptors demonstrate sensitivity to the progression of ME/CFS. The purpose of this study is to investigate the joint potential of inflammatome-characterized by interferon (IFN)-, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-21, Il-23, IL-6, IL-17A, Activin-B, immunome (IgG1, IgG2, IgG3, IgG4, IgM, and IgA), and receptor-based biomarkers (anti-M3, anti-M4, and anti-β2AdR)-for evaluating ME/CFS progression, and to identify an optimal selection for future validation in prospective clinical studies.
Methods: A dataset was used originating from 188 individuals, namely, 54 healthy controls, 30 patients with a "mild" condition, 73 patients with a "moderate" condition, and 31 patients with a "severe" condition, clinically assessed by Fukuda/CDC 1994 and international consensus criteria. Inflammatome, immunome, and receptor-based biomarkers were determined in blood plasma via ELISA and multiplex methods. Statistical analysis was done via correlation analysis, principal component analysis, linear discriminant analysis, and random forest classification; inter-group differences were tested via nonparametric Kruskal-Wallis test followed by the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli, and via Mann-Whitney test.
Results: The association between inflammatome and immunome markers is broader and stronger (coupling) in the severe group. Principal component factoring separates components associated with inflammatome, immunome, and receptor biomarkers. Random forest modeling demonstrates an excellent accuracy of over 90% for splitting healthy/with condition groups, and 45% for splitting healthy/severity groups. Classifiers with the highest potential are anti-β2AdR, anti-M4, IgG4, IL-2, and IL-6.
Discussion: The association between inflammatome and immunome markers is a candidate for controlled clinical study of ME/CFS progression markers that could be used for treatment individualization. Thus, the coupling effects between inflammation and immunity are potentially beneficial for the identification of prognostic factors in the context of ME/CFS progression mechanism studies.

Keywords

References

  1. J Clin Med. 2021 Oct 19;10(20): [PMID: 34682909]
  2. Musculoskeletal Care. 2017 Mar;15(1):23-35 [PMID: 26871999]
  3. Biochem Med (Zagreb). 2021 Feb 15;31(1):010502 [PMID: 33380887]
  4. Nat Commun. 2022 Aug 30;13(1):5104 [PMID: 36042189]
  5. J Transl Med. 2017 Mar 16;15(1):60 [PMID: 28302133]
  6. Healthcare (Basel). 2022 May 31;10(6): [PMID: 35742069]
  7. Chronic Illn. 2016 Dec;12(4):292-307 [PMID: 27127189]
  8. J Clin Med. 2020 May 21;9(5): [PMID: 32455633]
  9. J Clin Psychol. 2012 Sep;68(9):1028-35 [PMID: 22753044]
  10. Mol Biosyst. 2017 Jan 31;13(2):371-379 [PMID: 28059425]
  11. Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):8914-8916 [PMID: 28811366]
  12. PLoS One. 2014 Jan 08;9(1):e84839 [PMID: 24416298]
  13. Autoimmun Rev. 2018 Jun;17(6):601-609 [PMID: 29635081]
  14. Adv Sci (Weinh). 2023 Oct;10(30):e2302146 [PMID: 37653608]
  15. J Transl Med. 2021 Apr 19;19(1):159 [PMID: 33874961]
  16. J Clin Med. 2021 Jul 14;10(14): [PMID: 34300271]
  17. Front Neurol. 2020 Aug 11;11:826 [PMID: 32849252]
  18. Proc Natl Acad Sci U S A. 2019 May 21;116(21):10250-10257 [PMID: 31036648]
  19. Hum Immunol. 2015 Oct;76(10):729-35 [PMID: 26429318]
  20. Front Immunol. 2022 Oct 10;13:928945 [PMID: 36300129]
  21. Biomolecules. 2021 Aug 11;11(8): [PMID: 34439855]
  22. PLoS One. 2019 Dec 5;14(12):e0225995 [PMID: 31805176]
  23. J Transl Med. 2020 Feb 24;18(1):100 [PMID: 32093722]
  24. Int J Mol Sci. 2020 Feb 08;21(3): [PMID: 32046336]
  25. Minn Med. 1999 Nov;82(11):52-6 [PMID: 10589213]
  26. Ann Intern Med. 1994 Dec 15;121(12):953-9 [PMID: 7978722]
  27. Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7150-E7158 [PMID: 28760971]
  28. Ther Adv Infect Dis. 2021 Apr 20;8:20499361211009385 [PMID: 33959278]
  29. Diagnostics (Basel). 2019 Jul 26;9(3): [PMID: 31357483]
  30. Sci Adv. 2015 Feb;1(1): [PMID: 26079000]
  31. J Psychosom Res. 2000 Jun;48(6):555-60 [PMID: 11033374]
  32. Diagnostics (Basel). 2019 Jul 19;9(3): [PMID: 31331036]
  33. Int J Qual Stud Health Well-being. 2023 Dec;18(1):2146244 [PMID: 36367977]
  34. Diagnostics (Basel). 2019 Apr 10;9(2): [PMID: 30974900]
  35. Front Immunol. 2022 Sep 27;13:981532 [PMID: 36238301]
  36. J Intern Med. 2011 Oct;270(4):327-38 [PMID: 21777306]
  37. Front Med (Lausanne). 2022 Jan 28;8:688159 [PMID: 35155455]
  38. J Grad Med Educ. 2012 Sep;4(3):279-82 [PMID: 23997866]
  39. J R Soc Med. 1988 Jun;81(6):326-9 [PMID: 3404526]

MeSH Term

Humans
Fatigue Syndrome, Chronic
Interleukin-6
Prospective Studies
Biomarkers
Immunoglobulin G

Chemicals

Interleukin-6
Biomarkers
Immunoglobulin G

Word Cloud

Created with Highcharts 10.0.0ME/CFSbiomarkersimmunomeconditionprogressionpatientsviaanalysisinflammatomeanti-β2AdRanti-M4potentialreceptor-basedmarkersMyalgicencephalomyelitis/chronicfatiguesyndromegroupstudyjointIL-6IgG4evaluatingclinicalstudiesusedcomponentlinearforesttestassociationcouplingsplittinggroupsinflammationimmunityprognosticBackground:debilitatingchronicidentifieddiagnosticdateprevalencehigh089%accordingmetastudiesquarterbed-home-boundpresentsseriouspublichealthchallengeInvestigationsinflammation-immunityaxisencouragedlinksoutbreaksdiseasewavesRecentlyresearchrevealedantibodiesbeta2-adrenergicmuscarinicacetylcholinereceptorsdemonstratesensitivitypurposeinvestigateinflammatome-characterizedinterferonIFN-tumornecrosisfactorTNFinterleukinIL-2IL-21Il-23IL-17AActivin-BIgG1IgG2IgG3IgMIgAanti-M3-foridentifyoptimalselectionfuturevalidationprospectiveMethods:datasetoriginating188individualsnamely54healthycontrols30"mild"73"moderate"31"severe"clinicallyassessedFukuda/CDC1994internationalconsensuscriteriaInflammatomedeterminedbloodplasmaELISAmultiplexmethodsStatisticaldonecorrelationprincipaldiscriminantrandomclassificationinter-groupdifferencestestednonparametricKruskal-Wallisfollowedtwo-stagestep-upprocedureBenjaminiKriegerYekutieliMann-WhitneyResults:broaderstrongerseverePrincipalfactoringseparatescomponentsassociatedreceptorRandommodelingdemonstratesexcellentaccuracy90%healthy/with45%healthy/severityClassifiershighestIL-2Discussion:candidatecontrolledtreatmentindividualizationThuseffectspotentiallybeneficialidentificationfactorscontextmechanismExploringartificialintelligenceAIsupporteddiagnosistherapyassessment

Similar Articles

Cited By (3)