Multi-scale effects of habitat loss and the role of trait evolution.

Rishabh Bagawade, Koen J van Benthem, Meike J Wittmann
Author Information
  1. Rishabh Bagawade: Department of Theoretical Biology, Faculty of Biology Bielefeld University Bielefeld Germany. ORCID
  2. Koen J van Benthem: Department of Theoretical Biology, Faculty of Biology Bielefeld University Bielefeld Germany. ORCID
  3. Meike J Wittmann: Department of Theoretical Biology, Faculty of Biology Bielefeld University Bielefeld Germany. ORCID

Abstract

Habitat loss (HL) is a major cause of species extinctions. Although the effects of HL beyond the directly impacted area have been previously observed, they have not been modelled explicitly, especially in an eco-evolutionary context. To start filling this gap, we study a two-patch deterministic consumer-resource model, with one of the patches experiencing loss of resources as a special case of HL. Our model allows foraging and mating within a patch as well as between patches. We then introduce heritable variation in consumer traits related to resource utilization and patch use to investigate eco-evolutionary dynamics and compare results with constant and no trait variation scenarios. Our results show that HL in one patch can indeed reduce consumer densities in the neighbouring patch but can also increase consumer densities in the neighbouring patch when the resources are overexploited. Yet at the landscape scale, the effect of HL on consumer densities is consistently negative. Patch isolation increases consumer density in the patch experiencing HL but has generally negative effects on the neighbouring patch, with context-dependent results at the landscape scale. With high cross-patch dependence and coupled foraging and mating preferences, local HL can sometimes even lead to landscape-level consumer extinction. Eco-evolutionary dynamics can rescue consumers from such extinction in some cases if their death rates are sufficiently small. More generally, trait evolution had positive or negative effects on equilibrium consumer densities after HL, depending on the evolving trait and the spatial scale considered. In summary, our findings show that HL at a local scale can affect the neighbouring patch and the landscape as a whole, where heritable trait variation can, in some cases, alleviate the impact of HL. We thus suggest joint consideration of multiple spatial scales and trait variation when assessing and predicting the impacts of HL.

Keywords

References

  1. Evol Appl. 2008 May;1(2):300-18 [PMID: 25567633]
  2. Evol Appl. 2013 Feb;6(2):353-64 [PMID: 23467649]
  3. Biol Rev Camb Philos Soc. 2021 Oct;96(5):1933-1950 [PMID: 33998139]
  4. Science. 2011 Jun 10;332(6035):1327-30 [PMID: 21659606]
  5. Evolution. 2011 Jun;65(6):1739-51 [PMID: 21644960]
  6. Nat Commun. 2019 May 24;10(1):2322 [PMID: 31127118]
  7. Am Nat. 2002 Sep;160(3):293-305 [PMID: 18707440]
  8. J Math Biol. 1998 Dec;37(6):491-533 [PMID: 9894349]
  9. Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2678-83 [PMID: 26903642]
  10. Nature. 1999 Jul 22;400(6742):354-7 [PMID: 10432112]
  11. J Theor Biol. 2020 Apr 21;491:110142 [PMID: 31881213]
  12. PLoS Biol. 2014 Dec 09;12(12):e1002017 [PMID: 25489940]
  13. J Biosci. 2022;47: [PMID: 35387898]
  14. Theor Popul Biol. 1999 Apr;55(2):189-207 [PMID: 10329518]
  15. Proc Biol Sci. 1994 Feb 22;255(1343):133-8 [PMID: 8165226]
  16. Am Nat. 2021 Mar;197(3):336-350 [PMID: 33625964]
  17. Theor Popul Biol. 2002 Nov;62(3):231-49 [PMID: 12408943]
  18. Heredity (Edinb). 2005 Oct;95(4):255-73 [PMID: 16094300]
  19. Am Nat. 2019 Jun;193(6):814-829 [PMID: 31094600]
  20. Ecol Lett. 2022 Dec;25(12):2597-2610 [PMID: 36223432]
  21. Ecol Lett. 2019 Jun;22(6):1019-1027 [PMID: 30932319]
  22. Nat Commun. 2021 Aug 6;12(1):4759 [PMID: 34362916]
  23. Am Nat. 2020 Feb;195(2):290-299 [PMID: 32017616]
  24. Theor Popul Biol. 1999 Jun;55(3):283-96 [PMID: 10366553]
  25. Ecology. 2011 Jul;92(7):1503-12 [PMID: 21870624]
  26. Trends Ecol Evol. 1999 Sep;14(9):361-366 [PMID: 10441312]
  27. Ecol Lett. 2009 May;12(5):462-74 [PMID: 19220393]
  28. Theor Popul Biol. 2001 Mar;59(2):119-31 [PMID: 11302757]
  29. Theor Popul Biol. 1999 Dec;56(3):231-42 [PMID: 10607518]
  30. Ecol Evol. 2024 Jan 04;14(1):e10799 [PMID: 38187921]
  31. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120404 [PMID: 23209175]
  32. Conserv Biol. 2022 Oct;36(5):e13940 [PMID: 35674090]
  33. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120081 [PMID: 23209163]
  34. Biol Rev Camb Philos Soc. 2010 Feb;85(1):35-53 [PMID: 19930172]

Word Cloud

Created with Highcharts 10.0.0HLpatchconsumertraitcanlosseffectsvariationdensitiesneighbouringscalemodeldynamicsresultslandscapenegativespatialeco-evolutionaryonepatchesexperiencingresourcesforagingmatingheritableshowgenerallylocalextinctioncasesevolutionscaleshabitatHabitatmajorcausespeciesextinctionsAlthoughbeyonddirectlyimpactedareapreviouslyobservedmodelledexplicitlyespeciallycontextstartfillinggapstudytwo-patchdeterministicconsumer-resourcespecialcaseallowswithinwellintroducetraitsrelatedresourceutilizationuseinvestigatecompareconstantscenariosindeedreducealsoincreaseoverexploitedYeteffectconsistentlyPatchisolationincreasesdensitycontext-dependenthighcross-patchdependencecoupledpreferencessometimesevenleadlandscape-levelEco-evolutionaryrescueconsumersdeathratessufficientlysmallpositiveequilibriumdependingevolvingconsideredsummaryfindingsaffectwholealleviateimpactthussuggestjointconsiderationmultipleassessingpredictingimpactsMulti-scaleroleconsumer‐resourcesystemseco‐evolutionaryoverexploitationtwo‐patch

Similar Articles

Cited By