Survival and grade of the glioma prediction using transfer learning.

Santiago Valbuena Rubio, María Teresa García-Ordás, Oscar García-Olalla Olivera, Héctor Alaiz-Moretón, Maria-Inmaculada González-Alonso, José Alberto Benítez-Andrades
Author Information
  1. Santiago Valbuena Rubio: IA Department, Xeridia S.L., León, León, Spain.
  2. María Teresa García-Ordás: SECOMUCI Research Group, Escuela de Ingenierías Industrial e Informática, Universidad de León, León, Spain.
  3. Oscar García-Olalla Olivera: IA Department, Xeridia S.L., León, León, Spain.
  4. Héctor Alaiz-Moretón: SECOMUCI Research Group, Escuela de Ingenierías Industrial e Informática, Universidad de León, León, Spain.
  5. Maria-Inmaculada González-Alonso: Department of Electric, Systems and Automatics Engineering, Universidad de León, León, Spain.
  6. José Alberto Benítez-Andrades: SALBIS Research Group, Department of Electric, Systems and Automatics Engineering, Universidad de León, León, Spain. ORCID

Abstract

Glioblastoma is a highly malignant brain tumor with a life expectancy of only 3-6 months without treatment. Detecting and predicting its survival and grade accurately are crucial. This study introduces a novel approach using transfer learning techniques. Various pre-trained networks, including EfficientNet, ResNet, VGG16, and Inception, were tested through exhaustive optimization to identify the most suitable architecture. Transfer learning was applied to fine-tune these models on a Glioblastoma image dataset, aiming to achieve two objectives: survival and tumor grade prediction.The experimental results show 65% accuracy in survival prediction, classifying patients into short, medium, or long survival categories. Additionally, the prediction of tumor grade achieved an accuracy of 97%, accurately differentiating low-grade gliomas (LGG) and high-grade gliomas (HGG). The success of the approach is attributed to the effectiveness of transfer learning, surpassing the current state-of-the-art methods. In conclusion, this study presents a promising method for predicting the survival and grade of Glioblastoma. Transfer learning demonstrates its potential in enhancing prediction models, particularly in scenarios with limited large datasets. These findings hold promise for improving diagnostic and treatment approaches for Glioblastoma patients.

Keywords

References

  1. Health Inf Sci Syst. 2018 Sep 28;6(1):18 [PMID: 30279988]
  2. Comput Med Imaging Graph. 2020 Oct;85:101785 [PMID: 32898732]
  3. Comput Electr Eng. 2022 Jul;101:108018 [PMID: 35502295]
  4. CA Cancer J Clin. 2022 Jan;72(1):7-33 [PMID: 35020204]
  5. Front Public Health. 2022 Dec 01;10:959667 [PMID: 36530682]
  6. Comput Biol Med. 2022 Mar;142:105160 [PMID: 34995955]
  7. BMC Med Inform Decis Mak. 2023 Apr 26;23(1):78 [PMID: 37101176]
  8. Interdiscip Sci. 2021 Dec;13(4):779-786 [PMID: 34351570]
  9. Med Image Anal. 2020 Oct;65:101794 [PMID: 32781377]
  10. Comput Methods Programs Biomed. 2022 Aug;223:106951 [PMID: 35767911]
  11. Sci Rep. 2020 Nov 12;10(1):19726 [PMID: 33184301]
  12. Comput Biol Med. 2021 Apr;131:104262 [PMID: 33607378]
  13. Acta Neuropathol. 2007 Aug;114(2):97-109 [PMID: 17618441]
  14. Pattern Recognit Lett. 2022 Jan;153:67-74 [PMID: 34876763]
  15. An Pediatr (Barc). 2015 Feb;82(2):68-74 [PMID: 24863616]
  16. J Oncol Pract. 2016 Dec;12(12):1235-1241 [PMID: 27943684]
  17. Biomedicines. 2023 May 04;11(5): [PMID: 37239025]
  18. Adv Radiat Oncol. 2021 Jul 01;6(5):100746 [PMID: 34458648]
  19. Front Syst Neurosci. 2022 May 26;16:838822 [PMID: 35720439]
  20. Comput Methods Programs Biomed. 2022 Jun;219:106762 [PMID: 35378394]
  21. Health Inf Sci Syst. 2022 Jan 19;10(1):1 [PMID: 35096384]
  22. Mol Clin Oncol. 2013 Nov;1(6):935-941 [PMID: 24649273]
  23. Sci Data. 2017 Sep 05;4:170117 [PMID: 28872634]
  24. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3081-3084 [PMID: 29060549]
  25. IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024 [PMID: 25494501]
  26. Life (Basel). 2023 Jan 28;13(2): [PMID: 36836705]
  27. Interdiscip Sci. 2022 Mar;14(1):113-129 [PMID: 34338956]
  28. Magn Reson Imaging. 2022 Jan;85:222-227 [PMID: 34687850]
  29. Ophthalmol Sci. 2022 Feb 12;2(2):100127 [PMID: 36249690]
  30. JAMA Oncol. 2016 Nov 01;2(11):1460-1469 [PMID: 27310651]
  31. Pac Symp Biocomput. 2018;23:331-342 [PMID: 29218894]

Word Cloud

Created with Highcharts 10.0.0learningsurvivalgradepredictiontumortransferTransferglioblastomatreatmentpredictingaccuratelystudyapproachusingmodelsaccuracypatientsgliomasGlioblastomahighlymalignantbrainlifeexpectancy3-6monthswithoutDetectingcrucialintroducesnoveltechniquesVariouspre-trainednetworksincludingEfficientNetResNetVGG16Inceptiontestedexhaustiveoptimizationidentifysuitablearchitectureappliedfine-tuneimagedatasetaimingachievetwoobjectives:Theexperimentalresultsshow65%classifyingshortmediumlongcategoriesAdditionallyachieved97%differentiatinglow-gradeLGGhigh-gradeHGGsuccessattributedeffectivenesssurpassingcurrentstate-of-the-artmethodsconclusionpresentspromisingmethoddemonstratespotentialenhancingparticularlyscenarioslimitedlargedatasetsfindingsholdpromiseimprovingdiagnosticapproachesSurvivalgliomaConvolutionalneuralnetworkDeepGlioma

Similar Articles

Cited By

No available data.