Anti-Ebola virus mAb 3A6 with unprecedented potency protects highly viremic animals from fatal outcome and physically lifts its glycoprotein target from the virion membrane.

Erica Saphire, Zhe Li Salie, Zunlong Ke, Peter Halfmann, Lisa Evans DeWald, Sara McArdle, Ariadna Grinyo, Edgar Davidson, Sharon Schendel, Chitra Hariharan, Michael Norris, Xiaoying Yu, Chakravarthy Chennareddy, Xiaoli Xiong, Megan Heinrich, Michael Holbrook, Benjamin Doranz, Ian Crozier, Kathryn Hastie, Yoshihiro Kawaoka, Luis Branco, Jens Kuhn, John Briggs, Gabriella Worwa, Carl Davis, Rafi Ahmed
Author Information
  1. Erica Saphire: La Jolla Institute for Immunology. ORCID
  2. Zhe Li Salie: Eli Lilly.
  3. Zunlong Ke: Medical Research Council.
  4. Peter Halfmann: University of Wisconsin - Madison. ORCID
  5. Lisa Evans DeWald: Emergent Biosolutions.
  6. Sara McArdle: La Jolla Institute for Immunology. ORCID
  7. Ariadna Grinyo: Integral Molecular.
  8. Edgar Davidson: Integral Molecular.
  9. Sharon Schendel: La Jolla Institute for Immunology. ORCID
  10. Chitra Hariharan: La Jolla Institute for Immunology.
  11. Michael Norris: Univeristy of Toronto Canada.
  12. Xiaoying Yu: La Jolla Institute for Immunology.
  13. Chakravarthy Chennareddy: Emory University.
  14. Xiaoli Xiong: Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences. ORCID
  15. Megan Heinrich: Page 2/29 Zalgen Labs, LLC.
  16. Michael Holbrook: National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, National Institutes of Health (NIH). ORCID
  17. Benjamin Doranz: Integral Molecular. ORCID
  18. Kathryn Hastie: La Jolla Institute for Immunology.
  19. Yoshihiro Kawaoka: University of Wisconsin-Madison. ORCID
  20. Luis Branco: Zalgen.
  21. Jens Kuhn: National Institutes of Health (NIH). ORCID
  22. John Briggs: Medical Research Council.
  23. Gabriella Worwa: National Institutes of Health.
  24. Carl Davis: Emory University.
  25. Rafi Ahmed: Emory University School of Medicine. ORCID

Abstract

Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP) are the standard of care for Ebola virus disease (EVD). Anti-GP mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV . However, their neutralization mechanism is poorly understood because they target a GP epitope that has evaded structural characterization. Moreover, their efficacy has only been evaluated in the mouse model of EVD. Using x-ray crystallography and cryo-electron tomography of 3A6 complexed with its stalk- GP MPER epitope we reveal a novel mechanism in which 3A6 elevates the stalk or stabilizes a conformation of GP that is lifted from the virion membrane. In domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high viremia levels, advanced disease stages, and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. These findings can guide design of next-generation, highly potent anti-EBOV mAbs.

Keywords

References

  1. Nature. 2020 Dec;588(7838):498-502 [PMID: 32805734]
  2. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  3. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  4. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11751-E11760 [PMID: 30478053]
  5. Viruses. 2020 Jul 14;12(7): [PMID: 32674252]
  6. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5762-7 [PMID: 9576958]
  7. Cell Host Microbe. 2018 Jan 10;23(1):101-109.e4 [PMID: 29324225]
  8. Nat Protoc. 2009;4(3):372-84 [PMID: 19247287]
  9. J Virol. 1998 Aug;72(8):6442-7 [PMID: 9658086]
  10. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1129-33 [PMID: 18212124]
  11. Structure. 2015 Sep 1;23(9):1743-1753 [PMID: 26256537]
  12. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 [PMID: 21460441]
  13. J Struct Biol. 2005 Mar;149(3):227-34 [PMID: 15721576]
  14. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92 [PMID: 21460446]
  15. Am J Trop Med Hyg. 1994 Oct;51(4):393-400 [PMID: 7943563]
  16. Cell. 2022 Mar 17;185(6):995-1007.e18 [PMID: 35303429]
  17. Cell. 2016 Jan 14;164(1-2):258-268 [PMID: 26771495]
  18. Cell. 2019 May 30;177(6):1566-1582.e17 [PMID: 31104840]
  19. Cell Host Microbe. 2023 Feb 8;31(2):260-272.e7 [PMID: 36708708]
  20. Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10112-10117 [PMID: 30224494]
  21. Am J Trop Med Hyg. 2010 May;82(5):954-60 [PMID: 20439981]
  22. Cell. 2016 Jan 28;164(3):392-405 [PMID: 26806128]
  23. mBio. 2018 Sep 11;9(5): [PMID: 30206174]
  24. Sci Rep. 2017 Dec 4;7(1):16878 [PMID: 29203879]
  25. Science. 2016 Mar 4;351(6277):1078-83 [PMID: 26912366]
  26. Cell Rep. 2020 Apr 28;31(4):107583 [PMID: 32348769]
  27. Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7987-E7996 [PMID: 28874543]
  28. Science. 2005 Jun 10;308(5728):1643-5 [PMID: 15831716]
  29. Nat Commun. 2019 Apr 17;10(1):1788 [PMID: 30996276]
  30. Nature. 2008 Jul 10;454(7201):177-82 [PMID: 18615077]
  31. J Virol. 2015 Nov;89(21):10982-92 [PMID: 26311869]
  32. Pathogens. 2022 Mar 18;11(3): [PMID: 35335698]
  33. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  34. Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877 [PMID: 31588918]
  35. J Infect Dis. 2018 Nov 22;218(suppl_5):S612-S626 [PMID: 29860496]
  36. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  37. PLoS Pathog. 2022 May 18;18(5):e1010518 [PMID: 35584193]
  38. Anal Biochem. 1996 Sep 5;240(2):155-66 [PMID: 8811899]
  39. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  40. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):293-302 [PMID: 21460447]
  41. Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14 [PMID: 23793146]
  42. Nat Med. 2019 Oct;25(10):1589-1600 [PMID: 31591605]
  43. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17182-7 [PMID: 25404321]
  44. Elife. 2020 Oct 05;9: [PMID: 33016878]
  45. Curr Opin Immunol. 2021 Aug;71:27-33 [PMID: 33873076]
  46. Cell. 2018 Aug 9;174(4):938-952.e13 [PMID: 30096313]
  47. Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4729-34 [PMID: 15774580]
  48. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  49. Nature. 2016 Jul 7;535(7610):169-172 [PMID: 27362232]
  50. Viruses. 2012 Dec 06;4(12):3511-30 [PMID: 23223188]
  51. Science. 2016 Mar 18;351(6279):1339-42 [PMID: 26917593]
  52. Cell Rep. 2018 Sep 4;24(10):2723-2732.e4 [PMID: 30184505]
  53. J Struct Biol. 1996 Jan-Feb;116(1):71-6 [PMID: 8742726]
  54. Nat Microbiol. 2018 Jun;3(6):670-677 [PMID: 29736037]
  55. Methods Mol Biol. 2006;328:97-112 [PMID: 16785643]

Grants

  1. 75N91019D00024/NCI NIH HHS
  2. HHSN272200700016I/NIAID NIH HHS
  3. HHSN261201500003C/NCI NIH HHS
  4. S10 OD012289/NIH HHS
  5. U19 AI142790/NIAID NIH HHS
  6. HHSN261201500003I/NCI NIH HHS
  7. HHSN272201400058C/NIAID NIH HHS
  8. HHSN272201800013C/NIAID NIH HHS
  9. P41 GM103393/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.03A6virusGPmembranemAbsEbolaEBOVEVDstalkMPERglycoproteindiseaseproximalexternalregionmechanismtargetepitopeefficacyvirionanti-EBOVhighlymAbstudyantibodyMonoclonalantibodiesstandardcareAnti-GPtargetingpotentlyneutralizeHoweverneutralizationpoorlyunderstoodevadedstructuralcharacterizationMoreoverevaluatedmousemodelUsingx-raycrystallographycryo-electrontomographycomplexedstalk-revealnovelelevatesstabilizesconformationlifteddomesticguineapigrhesusmonkeymodelsprovidestherapeuticbenefithighviremialevelsadvancedstageslowestdoseyetdemonstratedmAb-basedmonotherapyfindingscanguidedesignnext-generationpotentAnti-EbolaunprecedentedpotencyprotectsviremicanimalsfataloutcomephysicallyliftsAnimalmonoclonal

Similar Articles

Cited By