Strong selection signatures for Aleutian disease tolerance acting on novel candidate genes linked to immune and cellular responses in American mink (Neogale vison).

Seyed Milad Vahedi, Siavash Salek Ardestani, Mohammad Hossein Banabazi, K Fraser Clark
Author Information
  1. Seyed Milad Vahedi: Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS, B2N5E3, Canada.
  2. Siavash Salek Ardestani: Department of Animal Science, University of Zanjan, Zanjan, 4537138791, Zanjan, Iran.
  3. Mohammad Hossein Banabazi: Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden. mohammad.hossein.banabazi@slu.se.
  4. K Fraser Clark: Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS, B2N5E3, Canada. fraser.clark@dal.ca.

Abstract

Aleutian disease (AD) is a multi-systemic infectious disease in American mink (Neogale vison) caused by Aleutian mink disease virus (AMDV). This study aimed to identify candidate regions and genes underlying selection for response against AMDV using whole-genome sequence (WGS) data. Three case-control selection signatures studies were conducted between animals (N = 85) producing high versus low antibody levels against AMDV, grouped by counter immunoelectrophoresis (CIEP) test and two enzyme-linked immunosorbent assays (ELISA). Within each study, selection signals were detected using fixation index (FST) and nucleotide diversity (θπ ratios), and validated by cross-population extended haplotype homozygosity (XP-EHH) test. Within- and between-studies overlapping results were then evaluated. Within-studies overlapping results indicated novel candidate genes related to immune and cellular responses (e.g., TAP2, RAB32), respiratory system function (e.g., SPEF2, R3HCC1L), and reproduction system function (e.g., HSF2, CFAP206) in other species. Between-studies overlapping results identified three large segments under strong selection pressure, including two on chromosome 1 (chr1:88,770-98,281 kb and chr1:114,133-120,473) and one on chromosome 6 (chr6:37,953-44,279 kb). Within regions with strong signals, we found novel candidate genes involved in immune and cellular responses (e.g., homologous MHC class II genes, ITPR3, VPS52) in other species. Our study brings new insights into candidate regions and genes controlling AD response.

References

  1. Heredity (Edinb). 2015 Nov;115(5):426-36 [PMID: 25990878]
  2. Virus Evol. 2016 Feb 27;2(1):vew004 [PMID: 27774297]
  3. J Vet Sci. 2020 Jul;21(4):e65 [PMID: 32735101]
  4. Cell. 1996 Feb 23;84(4):505-7 [PMID: 8598037]
  5. Vet Pathol. 1986 Sep;23(5):579-88 [PMID: 3022453]
  6. Front Genet. 2020 Feb 25;11:94 [PMID: 32180793]
  7. Can J Comp Med Vet Sci. 1962 May;26(5):97-102 [PMID: 17649371]
  8. Commun Biol. 2022 Dec 16;5(1):1381 [PMID: 36526733]
  9. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73 [PMID: 291943]
  10. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  11. J Virol. 2017 May 12;91(11): [PMID: 28331092]
  12. J Virol. 2003 Jul;77(13):7444-51 [PMID: 12805443]
  13. Virol J. 2017 Jun 21;14(1):119 [PMID: 28637462]
  14. Novartis Found Symp. 2002;247:91-101; discussion 101-3, 119-28, 244-52 [PMID: 12539951]
  15. J Clin Microbiol. 1978 Jan;7(1):18-22 [PMID: 203601]
  16. Trends Immunol. 2016 Nov;37(11):724-737 [PMID: 27614798]
  17. Hum Genet. 2021 Sep;140(9):1367-1377 [PMID: 34255152]
  18. J Virol. 2000 Feb;74(4):1919-30 [PMID: 10644365]
  19. J Biol Chem. 2003 May 9;278(19):17573-9 [PMID: 12621056]
  20. Vet Microbiol. 2014 Oct 10;173(3-4):355-9 [PMID: 25183237]
  21. J Virol Methods. 2016 Sep;235:144-151 [PMID: 27283885]
  22. J Virol. 2016 Oct 28;90(22):10120-10132 [PMID: 27581988]
  23. J Vet Med B Infect Dis Vet Public Health. 2005 Sep-Oct;52(7-8):331-4 [PMID: 16316395]
  24. J Anim Breed Genet. 2023 Jan;140(1):92-105 [PMID: 35988016]
  25. BMC Genomics. 2019 Oct 15;20(1):735 [PMID: 31615414]
  26. Vet Microbiol. 2018 Jul;221:90-93 [PMID: 29981714]
  27. J Virol. 1996 Oct;70(10):7327-30 [PMID: 8794392]
  28. Science. 1990 Dec 21;250(4988):1723-6 [PMID: 2270487]
  29. Am J Hum Genet. 2018 Sep 6;103(3):338-348 [PMID: 30100085]
  30. Cell. 1997 Jun 27;89(7):1067-76 [PMID: 9215629]
  31. Commun Biol. 2021 Nov 18;4(1):1307 [PMID: 34795381]
  32. J Cell Biol. 2002 Aug 19;158(4):659-68 [PMID: 12186851]
  33. Genesis. 2003 May;36(1):48-61 [PMID: 12748967]
  34. DNA Cell Biol. 2017 Jul;36(7):513-517 [PMID: 28594571]
  35. J Virol. 1996 Mar;70(3):1455-66 [PMID: 8627663]
  36. Gastroenterology. 1999 May;116(5):1149-54 [PMID: 10220507]
  37. J Gen Virol. 2000 Feb;81(Pt 2):335-43 [PMID: 10644831]
  38. Int J Immunogenet. 2010 Dec;37(6):439-43 [PMID: 20618519]
  39. Nature. 2007 Oct 18;449(7164):913-8 [PMID: 17943131]
  40. Arch Virol. 1997;142(2):363-73 [PMID: 9125049]
  41. Genes (Basel). 2021 Feb 11;12(2): [PMID: 33670138]
  42. J Virol. 1993 Dec;67(12):7017-24 [PMID: 8230426]
  43. J Biol Chem. 2005 Oct 21;280(42):35776-83 [PMID: 16120614]
  44. J Virol. 2013 Oct;87(19):10412-22 [PMID: 23864634]
  45. Sci Rep. 2017 Nov 6;7(1):14564 [PMID: 29109430]
  46. Infect Agents Dis. 1994 Dec;3(6):279-301 [PMID: 7889316]
  47. Res Vet Sci. 2017 Apr;111:127-134 [PMID: 28249174]
  48. Prev Vet Med. 2012 Oct 1;106(3-4):332-8 [PMID: 22497690]
  49. Mol Immunol. 2017 Feb;82:19-33 [PMID: 28006656]
  50. Nat Rev Immunol. 2006 Apr;6(4):271-82 [PMID: 16557259]
  51. J Infect Dis. 2002 Aug 15;186(4):447-52 [PMID: 12195370]
  52. Gigascience. 2018 Jan 1;7(1):1-6 [PMID: 29220494]
  53. Vet Pathol. 1994 Mar;31(2):216-28 [PMID: 8203085]
  54. PLoS One. 2019 Jun 14;14(6):e0209632 [PMID: 31199810]
  55. Prev Vet Med. 2012 Nov 1;107(1-2):134-41 [PMID: 22717327]
  56. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  57. Evol Appl. 2012 Jun;5(4):330-40 [PMID: 25568054]
  58. Cilia. 2013 Dec 20;2(1):18 [PMID: 24360193]
  59. PLoS Genet. 2018 Jun 18;14(6):e1007387 [PMID: 29912945]
  60. Genomics. 2021 Nov;113(6):4254-4266 [PMID: 34757126]
  61. Annu Rev Genet. 2005;39:197-218 [PMID: 16285858]
  62. J Clin Virol. 2015 Jan;62:54-7 [PMID: 25542471]
  63. J Virol. 2001 Jan;75(1):341-50 [PMID: 11119603]
  64. Vet Immunol Immunopathol. 1991 Apr;28(2):127-41 [PMID: 1651029]
  65. BMC Bioinformatics. 2022 Jan 11;23(1):33 [PMID: 35016614]
  66. Nat Rev Immunol. 2015 Apr;15(4):203-16 [PMID: 25720354]
  67. Res Vet Sci. 2019 Jun;124:85-92 [PMID: 30856435]
  68. J Exp Med. 2017 Apr 3;214(4):919-929 [PMID: 28246125]
  69. Annu Rev Cell Dev Biol. 1995;11:441-69 [PMID: 8689565]
  70. Can Vet J. 2010 Jan;51(1):75-7 [PMID: 20357945]
  71. Am J Hum Genet. 2021 Jan 7;108(1):194-201 [PMID: 33357513]
  72. J Anim Sci. 2021 Aug 1;99(8): [PMID: 34279039]
  73. J Virol. 1988 May;62(5):1495-507 [PMID: 2833604]
  74. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):619-628 [PMID: 33662620]
  75. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  76. J Virol. 1989 Jan;63(1):9-17 [PMID: 2535756]
  77. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  78. Development. 2020 Jun 15;147(21): [PMID: 32376681]
  79. Animals (Basel). 2020 Feb 06;10(2): [PMID: 32041297]
  80. Biol Reprod. 2011 Oct;85(4):690-701 [PMID: 21715716]
  81. Clin Vaccine Immunol. 2009 Sep;16(9):1360-5 [PMID: 19641102]
  82. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  83. BMC Genet. 2015 Aug 20;16:104 [PMID: 26289667]
  84. Sci Rep. 2021 Feb 3;11(1):2944 [PMID: 33536540]
  85. Trends Immunol. 2003 May;24(5):278-85 [PMID: 12738423]
  86. FASEB J. 2000 Jul;14(10):1375-9 [PMID: 10877830]
  87. Heredity (Edinb). 2021 Sep;127(3):334-343 [PMID: 34262170]
  88. Genome. 2020 Aug;63(8):387-396 [PMID: 32407640]

MeSH Term

Animals
Humans
Mink
Aleutian Mink Disease
Aleutian Mink Disease Virus
Chromosomes, Human, Pair 1
Chromosomes, Human, Pair 6

Word Cloud

Created with Highcharts 10.0.0genescandidateselectiondiseaseegAleutianminkAMDVstudyregionsoverlappingresultsnovelimmunecellularresponsesADAmericanNeogalevisonresponseusingsignaturestesttwoWithinsignalssystemfunctionspeciesstrongchromosomemulti-systemicinfectiouscausedvirusaimedidentifyunderlyingwhole-genomesequenceWGSdataThreecase-controlstudiesconductedanimalsN = 85producinghighversuslowantibodylevelsgroupedcounterimmunoelectrophoresisCIEPenzyme-linkedimmunosorbentassaysELISAdetectedfixationindexFSTnucleotidediversityθπratiosvalidatedcross-populationextendedhaplotypehomozygosityXP-EHHWithin-between-studiesevaluatedWithin-studiesindicatedrelatedTAP2RAB32respiratorySPEF2R3HCC1LreproductionHSF2CFAP206Between-studiesidentifiedthreelargesegmentspressureincluding1chr1:88770-98281 kbchr1:114133-120473one6chr6:37953-44279 kbfoundinvolvedhomologousMHCclassIIITPR3VPS52bringsnewinsightscontrollingStrongtoleranceactinglinked

Similar Articles

Cited By