Building in vitro tools for livestock genomics: chromosomal variation within the PK15 cell line.

M Johnsson, J M Hickey, M K Jungnickel
Author Information
  1. M Johnsson: Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden. martin.johnsson@slu.se.
  2. J M Hickey: The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, EH25 9RG, UK.
  3. M K Jungnickel: The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, EH25 9RG, UK. melissa.jungnickel@ei.ed.ac.uk.

Abstract

BACKGROUND: Cultured porcine cell lines are powerful tools for functional genomics and in vitro phenotypic testing of candidate causal variants. However, to be utilised for genomic or variant interrogation assays, the genome sequence and structure of cultured cell lines must be realised. In this work, we called variants and used read coverage in combination with within-sample allele frequency to detect potential aneuploidy in two immortalised porcine kidney epithelial (PK15) cell lines and in a pig embryonic fibroblast line.
RESULTS: We compared two PK15 cultured cells samples: a new American Type Culture Collection (ATCC) sample and one that has been utilised and passaged within the laboratory for an extended period (> 10 years). Read coverage and within-sample allele frequencies showed that several chromosomes are fully or partially aneuploid in both PK15 lines, including potential trisomy of chromosome 4 and tetrasomy of chromosome 17. The older PK15 line showed evidence of additional structural variation and potentially clonal variation. By comparison, the pig embryonic fibroblast line was free from the gross aneuploidies seen in the PK15s.
CONCLUSIONS: Our results show that the PK15 cell lines examined have aneuploidies and complex structural variants in their genomes. We propose that screening for aneuploidy should be considered for cell lines, and discuss implications for livestock genomics.

Keywords

References

  1. Stem Cells Int. 2017;2017:2601746 [PMID: 29109740]
  2. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12644-9 [PMID: 22802626]
  3. iScience. 2023 Feb 20;26(3):106252 [PMID: 36936794]
  4. Nature. 2013 Aug 8;500(7461):207-11 [PMID: 23925245]
  5. Gigascience. 2020 Jun 1;9(6): [PMID: 32543654]
  6. Nature. 2014 Sep 4;513(7516):120-3 [PMID: 25141179]
  7. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  8. Histochem Cell Biol. 2006 Mar;125(3):293-305 [PMID: 16215741]
  9. Nat Commun. 2021 Jun 17;12(1):3715 [PMID: 34140474]
  10. Cancer Res. 1961 Aug;21:885-94 [PMID: 13744439]
  11. Nature. 2018 Oct;562(7726):217-222 [PMID: 30209399]
  12. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13692-7 [PMID: 9811862]
  13. Genetics. 2012 Mar;190(3):841-54 [PMID: 22419077]
  14. Cell Biol Int. 2013 Oct;37(10):1038-45 [PMID: 23723166]
  15. Cancer Res. 1959 Nov;19:1020-4 [PMID: 14399981]
  16. Cell Reprogram. 2012 Apr;14(2):112-22 [PMID: 22339199]
  17. Chromosoma. 1973;41(2):129-44 [PMID: 4120885]
  18. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  19. PLoS Genet. 2018 Oct 31;14(10):e1007750 [PMID: 30379811]
  20. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  21. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  22. Stem Cell Res Ther. 2019 Feb 26;10(1):68 [PMID: 30808416]
  23. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  24. Development. 2021 May 1;148(9): [PMID: 33913466]
  25. Cancer Res. 1999 Jan 1;59(1):141-50 [PMID: 9892199]
  26. Am J Vet Res. 1966 May;27(118):747-9 [PMID: 5962858]
  27. Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34 [PMID: 25199790]

Grants

  1. BBS/E/D/30002275/Biotechnology and Biological Sciences Research Council
  2. BBS/E/D/30002275/Biotechnology and Biological Sciences Research Council

MeSH Term

Animals
Swine
Livestock
Genomics
Cell Line
Aneuploidy
Chromosomes

Word Cloud

Created with Highcharts 10.0.0linesPK15celllinevariantsvariationporcinetoolsgenomicsvitroutilisedculturedcoveragewithin-sampleallelepotentialaneuploidytwopigembryonicfibroblastwithinshowedchromosomestructuralaneuploidieslivestockBACKGROUND:CulturedpowerfulfunctionalphenotypictestingcandidatecausalHowevergenomicvariantinterrogationassaysgenomesequencestructuremustrealisedworkcalledusedreadcombinationfrequencydetectimmortalisedkidneyepithelialRESULTS:comparedcellssamples:newAmericanTypeCultureCollectionATCCsampleonepassagedlaboratoryextendedperiod> 10 yearsReadfrequenciesseveralchromosomesfullypartiallyaneuploidincludingtrisomy4tetrasomy17olderevidenceadditionalpotentiallyclonalcomparisonfreegrossseenPK15sCONCLUSIONS:resultsshowexaminedcomplexgenomesproposescreeningconsidereddiscussimplicationsBuildinggenomics:chromosomalAneuploidyCellPig

Similar Articles

Cited By