Hybrid Polymer-Inorganic Materials with Hyaluronic Acid as Controlled Antibiotic Release Systems.

Kamila Lis, Joanna Szechyńska, Dominika Träger, Julia Sadlik, Karina Niziołek, Dagmara Słota, Josef Jampilek, Agnieszka Sobczak-Kupiec
Author Information
  1. Kamila Lis: Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland.
  2. Joanna Szechyńska: Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, 8 Niezapominajek, 30-239 Krakow, Poland.
  3. Dominika Träger: Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland.
  4. Julia Sadlik: Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland.
  5. Karina Niziołek: Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland. ORCID
  6. Dagmara Słota: Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland. ORCID
  7. Josef Jampilek: Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia. ORCID
  8. Agnieszka Sobczak-Kupiec: Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland. ORCID

Abstract

In recent years, significant developments have taken place in scientific fields such as tissue and materials engineering, which allow for the development of new, intelligent biomaterials. An example of such biomaterials is drug delivery systems that release the active substance directly at the site where the therapeutic effect is required. In this research, polymeric materials and ceramic-polymer composites were developed as carriers for the antibiotic clindamycin. The preparation and characterization of biomaterials based on hyaluronic acid, collagen, and nano brushite obtained using the photocrosslinking technique under UV (ultraviolet) light are described. Physical and chemical analyses of the materials obtained were carried out using Fourier transform infrared spectroscopy (FT-IR) and optical microscopy. The sorption capacities were determined and subjected to in vitro incubation in simulated biological environments such as Ringer's solution, simulated body fluid (SBF), phosphate-buffered saline (PBS), and distilled water. The antibiotic release rate was also measured. The study confirmed higher swelling capacity for materials with no addition of a ceramic phase, thus it can be concluded that brushite inhibits the penetration of the liquid medium into the interior of the samples, leading to faster absorption of the liquid medium. In addition, incubation tests confirmed preliminary biocompatibility. No drastic changes in pH values were observed, which suggests that the materials are stable under these conditions. The release rate of the antibiotic from the biomaterial into the incubation medium was determined using high-pressure liquid chromatography (HPLC). The concentration of the antibiotic in the incubation fluid increased steadily following a 14-day incubation in PBS, indicating continuous antibiotic release. Based on the results, it can be concluded that the developed polymeric material demonstrates potential for use as a carrier for the active substance.

Keywords

References

  1. ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20110-21 [PMID: 25361212]
  2. Neurochem Int. 2021 Jun;146:105033 [PMID: 33785419]
  3. ACS Biomater Sci Eng. 2019 Mar 11;5(3):1462-1475 [PMID: 33405621]
  4. Drug Deliv Transl Res. 2020 Feb;10(1):108-121 [PMID: 31428941]
  5. Bioact Mater. 2017 Jun 07;2(4):224-247 [PMID: 29744432]
  6. Nat Rev Cancer. 2004 Jul;4(7):528-39 [PMID: 15229478]
  7. Tissue Eng Part B Rev. 2010 Apr;16(2):219-55 [PMID: 19860551]
  8. Int J Biol Macromol. 2022 Jul 31;213:987-1006 [PMID: 35705126]
  9. Biomaterials. 2018 Dec;185:240-275 [PMID: 30261426]
  10. Int J Biol Macromol. 2020 May 15;151:1224-1239 [PMID: 31751713]
  11. Biomater Res. 2019 Jan 14;23:4 [PMID: 30675377]
  12. Int J Biol Macromol. 2021 Dec 15;193(Pt A):799-808 [PMID: 34743940]
  13. Chem Rev. 2011 Aug 10;111(8):4453-74 [PMID: 21417222]
  14. Biomed Res Int. 2015;2015:421746 [PMID: 26247020]
  15. Polymers (Basel). 2018 Jun 25;10(7): [PMID: 30960626]
  16. Bioact Mater. 2022 May 02;19:458-473 [PMID: 35574061]
  17. Materials (Basel). 2021 Nov 15;14(22): [PMID: 34832300]
  18. Gels. 2022 Jan 05;8(1): [PMID: 35049570]
  19. ACS Biomater Sci Eng. 2021 Sep 13;7(9):4102-4127 [PMID: 34137581]
  20. Biomater Res. 2023 Sep 15;27(1):86 [PMID: 37715230]
  21. Polymers (Basel). 2023 Jun 21;15(13): [PMID: 37447408]
  22. Rev Infect Dis. 1982 Nov-Dec;4(6):1133-53 [PMID: 6818656]
  23. Mater Sci Eng C Mater Biol Appl. 2016 Jun;63:172-84 [PMID: 27040209]
  24. Adv Drug Deliv Rev. 2015 Nov 1;94:53-62 [PMID: 25861724]
  25. J Tissue Eng Regen Med. 2018 Jun;12(6):1313-1326 [PMID: 29489058]
  26. Acta Biomater. 2014 Apr;10(4):1558-70 [PMID: 24361428]
  27. Polymers (Basel). 2022 Feb 24;14(5): [PMID: 35267722]
  28. Int J Mol Sci. 2020 May 11;21(9): [PMID: 32403422]
  29. Acta Biomater. 2021 Mar 15;123:51-71 [PMID: 33454382]
  30. Int J Mol Sci. 2023 Feb 13;24(4): [PMID: 36835168]
  31. Int J Microbiol. 2022 Apr 19;2022:1835603 [PMID: 35498395]
  32. Bioengineering (Basel). 2020 Dec 02;7(4): [PMID: 33276506]
  33. Int J Biol Macromol. 2016 May;86:917-28 [PMID: 26893053]
  34. J Biomed Mater Res A. 2016 May;104(5):1194-201 [PMID: 26749323]
  35. Biomaterials. 2009 Mar;30(7):1428-39 [PMID: 19081131]
  36. Materials (Basel). 2021 Oct 12;14(20): [PMID: 34683591]
  37. Nat Rev Rheumatol. 2015 Jan;11(1):45-54 [PMID: 25266456]
  38. J Intern Med. 1997 Jul;242(1):27-33 [PMID: 9260563]
  39. Int J Biol Macromol. 2022 Sep 30;217:1-18 [PMID: 35809676]
  40. Biomaterials. 2005 Nov;26(33):6423-9 [PMID: 15964620]
  41. Can J Infect Dis. 1998 Jan;9(1):22-8 [PMID: 22346533]
  42. Gels. 2022 Dec 17;8(12): [PMID: 36547359]
  43. Int J Mol Sci. 2020 Oct 29;21(21): [PMID: 33138182]
  44. Acta Pharm Sin B. 2019 Nov;9(6):1145-1162 [PMID: 31867161]
  45. Nanomaterials (Basel). 2023 Apr 25;13(9): [PMID: 37177013]
  46. Exploration (Beijing). 2021 Oct 30;1(2):20210011 [PMID: 37323213]
  47. J Am Dent Assoc. 2008 Sep;139(9):1192-9 [PMID: 18762629]
  48. Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110102 [PMID: 31546340]

Grants

  1. Biomateriały kompozytowe do zastosowań medycznych/Project FuturLab PK 2022/23

Word Cloud

Created with Highcharts 10.0.0materialsantibioticincubationreleasebiomaterialsbrushiteusingliquidmediumdrugdeliveryactivesubstancepolymericcompositesdevelopedclindamycinhyaluronicacidcollagenobtaineddeterminedsimulatedfluidPBSrateconfirmedadditioncanconcludedrecentyearssignificantdevelopmentstakenplacescientificfieldstissueengineeringallowdevelopmentnewintelligentexamplesystemsdirectlysitetherapeuticeffectrequiredresearchceramic-polymercarrierspreparationcharacterizationbasednanophotocrosslinkingtechniqueUVultravioletlightdescribedPhysicalchemicalanalysescarriedFouriertransforminfraredspectroscopyFT-IRopticalmicroscopysorptioncapacitiessubjectedvitrobiologicalenvironmentsRinger'ssolutionbodySBFphosphate-bufferedsalinedistilledwateralsomeasuredstudyhigherswellingcapacityceramicphasethusinhibitspenetrationinteriorsamplesleadingfasterabsorptiontestspreliminarybiocompatibilitydrasticchangespHvaluesobservedsuggestsstableconditionsbiomaterialhigh-pressurechromatographyHPLCconcentrationincreasedsteadilyfollowing14-dayindicatingcontinuousBasedresultsmaterialdemonstratespotentialusecarrierHybridPolymer-InorganicMaterialsHyaluronicAcidControlledAntibioticReleaseSystemssystem

Similar Articles

Cited By