The sexually divergent cFos activation map of fear extinction.

Kai Zhang, Dan Shen, Shihao Huang, Javed Iqbal, Gengdi Huang, Jijian Si, Yanxue Xue, Jian-Li Yang
Author Information
  1. Kai Zhang: Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
  2. Dan Shen: Xinxiang Medical University, 601 Jinsui Dadao, Hongqi District, Xinxiang City, Henan Province, China.
  3. Shihao Huang: National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, 100191, Beijing, China.
  4. Javed Iqbal: Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Shenzhen, 518118, China.
  5. Gengdi Huang: Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Shenzhen, 518118, China.
  6. Jijian Si: Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
  7. Yanxue Xue: National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, 100191, Beijing, China.
  8. Jian-Li Yang: Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.

Abstract

Objective: Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that can develop after experiencing or witnessing a traumatic event. Exposure therapy is a common treatment for PTSD, but it has varying levels of efficacy depending on sex. In this study, we aimed to compare the sexual dimorphism in brain activation during the extinction of fear conditioning in male and female rats by detecting the c-fos levels in the whole brain.
Methods: Thirty-two rats (Male: n = 16; Female: n = 16) were randomly separated into the extinction group as well as the non-extinction group, and fear conditioning was followed by extinction and non-extinction, respectively. Subsequently, brain sections from the sacrificed animal were performed immunofluorescence and the collected data were analyzed by repeated two-way ANOVAs as well as Pearson Correlation Coefficient.
Results: Our findings showed that most brain areas activated during extinction were similar in both male and female rats, except for the reuniens thalamic nucleus and ventral hippocampi. Furthermore, we found differences in the correlation between c-fos activation levels and freezing behavior during extinction between male and female rats. Specifically, in male rats, c-fos activation in the anterior cingulate cortex was negatively correlated with the freezing level, while c-fos activation in the retrosplenial granular cortex was positively correlated with the freezing level; but in female rats did not exhibit any correlation between c-fos activation and freezing level. Finally, the functional connectivity analysis revealed differences in the neural networks involved in extinction learning between male and female rats. In male rats, the infralimbic cortex and insular cortex, anterior cingulate cortex and retrosplenial granular cortex, and dorsal dentate gyrus and dCA3 were strongly correlated after extinction. In female rats, prelimbic cortex and basolateral amygdala, insular cortex and dCA3, and anterior cingulate cortex and dCA1 were significantly correlated.
Conclusion: These results suggest divergent neural networks involved in extinction learning in male and female rats and provide a clue for improving the clinical treatment of exposure therapy based on the sexual difference.

Keywords

References

  1. Neural Regen Res. 2023 May;18(5):1029-1030 [PMID: 36254987]
  2. Neurosci Bull. 2023 Jun;39(6):1009-1026 [PMID: 36680709]
  3. Clin Psychol Rev. 2022 Feb;91:102115 [PMID: 34954460]
  4. Med Clin North Am. 2023 Jan;107(1):85-99 [PMID: 36402502]
  5. Behav Neurosci. 2023 Jun;137(3):155-169 [PMID: 36757973]
  6. Neuropsychopharmacology. 2014 Apr;39(5):1282-9 [PMID: 24343528]
  7. Biol Psychol. 2014 Jul;100:1-12 [PMID: 24746848]
  8. Eur J Neurosci. 2020 Jul;52(1):2466-2486 [PMID: 31631413]
  9. Early Interv Psychiatry. 2022 Nov;16(11):1175-1184 [PMID: 35106931]
  10. Transl Psychiatry. 2014 Aug 05;4:e422 [PMID: 25093600]
  11. Neurosci Biobehav Rev. 2019 Dec;107:713-728 [PMID: 31055014]
  12. Sci Adv. 2021 Oct 15;7(42):eabj0751 [PMID: 34652937]
  13. Learn Mem. 2022 Sep 2;29(9):246-255 [PMID: 36206391]
  14. Neurosci Bull. 2023 Jan;39(1):29-40 [PMID: 35704211]
  15. Mo Med. 2021 Nov-Dec;118(6):546-551 [PMID: 34924624]
  16. Nat Rev Neurol. 2022 May;18(5):273-288 [PMID: 35352034]
  17. Lancet. 2022 Jul 2;400(10345):60-72 [PMID: 35780794]
  18. Neuroscience. 2022 Aug 10;497:146-156 [PMID: 35764190]
  19. Neuropsychopharmacology. 2015 Aug;40(9):2146-56 [PMID: 25722116]
  20. Clin Psychol Rev. 2003 May;23(3):339-76 [PMID: 12729677]
  21. Sci Rep. 2017 Aug 10;7(1):7857 [PMID: 28798340]
  22. Front Behav Neurosci. 2022 Oct 13;16:1011955 [PMID: 36311859]
  23. Neurosci Biobehav Rev. 2012 Aug;36(7):1773-802 [PMID: 22230704]
  24. Physiol Behav. 2013 Oct 2;122:208-15 [PMID: 23624153]
  25. Neuron. 2020 Mar 18;105(6):1077-1093.e7 [PMID: 31952856]
  26. Learn Mem. 2022 Sep 6;29(9):332-339 [PMID: 36206397]
  27. Curr Protoc. 2021 May;1(5):e102 [PMID: 33950571]
  28. Br J Pharmacol. 2019 Nov;176(21):4149-4158 [PMID: 30710446]
  29. Front Cell Neurosci. 2022 Mar 30;16:836948 [PMID: 35431810]
  30. Nat Neurosci. 2021 Jul;24(7):964-974 [PMID: 34017129]
  31. Physiol Behav. 2023 Jan 1;258:114006 [PMID: 36341833]
  32. World Psychiatry. 2022 Jun;21(2):309-310 [PMID: 35524628]
  33. Behav Brain Res. 2022 Oct 28;435:114050 [PMID: 35973470]
  34. Neurosci Biobehav Rev. 2022 Nov;142:104882 [PMID: 36150453]
  35. Annu Rev Psychol. 2012;63:129-51 [PMID: 22129456]
  36. Horm Behav. 2014 Nov;66(5):713-23 [PMID: 25311689]
  37. Neuropsychopharmacology. 2011 Oct;36(11):2276-85 [PMID: 21750582]
  38. Neurobiol Stress. 2022 May 09;18:100459 [PMID: 35601686]
  39. Eur J Psychotraumatol. 2022 May 26;13(1):2071527 [PMID: 35957628]
  40. Learn Mem. 2017 May 15;24(6):245-251 [PMID: 28507033]
  41. Neuroscience. 2009 Dec 15;164(3):887-95 [PMID: 19761818]
  42. Neuropsychopharmacology. 2017 Jan;42(2):397-407 [PMID: 27577601]
  43. Front Behav Neurosci. 2019 Mar 11;13:46 [PMID: 30914932]
  44. Trends Neurosci. 2012 Mar;35(3):145-55 [PMID: 22118930]
  45. Neurosci Biobehav Rev. 2019 Aug;103:81-108 [PMID: 31129235]
  46. Mol Psychiatry. 2022 Apr;27(4):2216-2224 [PMID: 35145227]
  47. Behav Brain Funct. 2006 Mar 07;2:8 [PMID: 16522198]
  48. Behav Res Ther. 2020 Apr;127:103576 [PMID: 32087391]
  49. Horm Behav. 2020 May;121:104693 [PMID: 31981581]
  50. Behav Brain Res. 2013 Sep 15;253:217-22 [PMID: 23886596]
  51. Mol Psychiatry. 2007 Feb;12(2):120-50 [PMID: 17160066]
  52. Brain Res. 2001 Jan 12;888(2):356-365 [PMID: 11150498]
  53. Front Behav Neurosci. 2015 Nov 09;9:298 [PMID: 26617500]
  54. J Psychiatr Res. 2022 Jul;151:619-625 [PMID: 35640386]
  55. Neurosci Bull. 2023 May;39(5):793-807 [PMID: 36528690]
  56. Hippocampus. 2009 Nov;19(11):1142-50 [PMID: 19338017]
  57. Brain Cogn. 2013 Feb;81(1):29-43 [PMID: 23164732]
  58. Psychopharmacology (Berl). 2019 Jan;236(1):369-381 [PMID: 30116860]
  59. Nature. 2022 Nov;611(7936):554-562 [PMID: 36323779]
  60. Neurosci Bull. 2022 Aug;38(8):953-965 [PMID: 35349095]
  61. Physiol Rev. 2021 Apr 1;101(2):611-681 [PMID: 32970967]
  62. Learn Mem. 2010 May 05;17(5):267-78 [PMID: 20445082]
  63. Neurobiol Learn Mem. 2015 Sep;123:117-24 [PMID: 26079214]
  64. J Neurosci. 2017 Nov 1;37(44):10567-10586 [PMID: 28954870]
  65. Exp Brain Res. 2010 Jun;203(2):285-97 [PMID: 20449729]
  66. Front Mol Neurosci. 2019 Jul 02;12:157 [PMID: 31312119]
  67. J Anxiety Disord. 2022 Aug;90:102607 [PMID: 35926254]
  68. Biol Psychiatry. 2017 Dec 1;82(11):781-793 [PMID: 28648649]
  69. Neurosci Biobehav Rev. 2022 Dec;143:104962 [PMID: 36402227]
  70. Neurosci Bull. 2020 Feb;36(2):153-164 [PMID: 31444653]
  71. Endocrinology. 2005 Apr;146(4):1650-73 [PMID: 15618360]
  72. Neurosci Bull. 2023 Feb;39(2):315-327 [PMID: 36319893]
  73. Neurosci Biobehav Rev. 2023 Mar;146:105039 [PMID: 36634832]
  74. Neuropharmacology. 2023 Jan 1;222:109298 [PMID: 36328063]
  75. Physiol Behav. 2010 Jan 12;99(1):82-90 [PMID: 19879284]