Mucosal-Associated Invariant T Cells are not susceptible in vitro to SARS-CoV-2 infection but accumulate into the lungs of COVID-19 patients.

Xiaobo Huang, Jonas Kantonen, Kirsten Nowlan, Ngoc Anh Nguyen, Suvi T Jokiranta, Suvi Kuivanen, Nelli Heikkilä, Shamita Mahzabin, Anu Kantele, Olli Vapalahti, Liisa Myllykangas, Santtu Heinonen, Mikko I Mäyränpää, Tomas Strandin, Eliisa Kekäläinen
Author Information
  1. Xiaobo Huang: Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland. Electronic address: xiaobo.huang@helsinki.fi.
  2. Jonas Kantonen: Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
  3. Kirsten Nowlan: Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
  4. Ngoc Anh Nguyen: Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
  5. Suvi T Jokiranta: Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
  6. Suvi Kuivanen: Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.
  7. Nelli Heikkilä: Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Center of Vaccinology, University of Geneva, Geneva, Switzerland.
  8. Shamita Mahzabin: Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
  9. Anu Kantele: Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Meilahti Vaccine Research Center, MeVac, Infectious Diseases, Helsinki University and Helsinki University Hospital, Helsinki, Finland.
  10. Olli Vapalahti: Division of Virology and Immunology, HUS Diagnostic Center, HUSLAB Clinical Microbiology, Helsinki, Finland; Zoonosis Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
  11. Liisa Myllykangas: Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
  12. Santtu Heinonen: New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
  13. Mikko I Mäyränpää: Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
  14. Tomas Strandin: Zoonosis Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland.
  15. Eliisa Kekäläinen: Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Division of Virology and Immunology, HUS Diagnostic Center, HUSLAB Clinical Microbiology, Helsinki, Finland.

Abstract

Prolonged T cell lymphopenia is common in COVID-19, caused by SARS-CoV-2. While the mechanisms of lymphopenia during COVID-19 remain elusive, it is especially pronounced in a specialized innate-like T cell population called Mucosal Associated Invariant T cells (MAITs). MAITs has been suggested to express Angiotensin-Converting Enzyme 2 (ACE2), which is the well-known cellular receptor for SARS-CoV-2. However, it is still unclear if SARS-CoV-2 can infect or affect MAIT cells directly. In this study, we performed multicolor flow cytometry on peripheral blood mononuclear cells obtained from COVID-19 patients to assess the frequencies of CD8Vα7.2CD161 MAIT subsets at acute and convalescent disease phases. The susceptibility of MAITs and T cells to direct exposure by SARS-CoV-2 was analysed using cells isolated from healthy donor buffy coats by viability assays, virus-specific RT-PCR, and flow cytometry. In situ lung immunofluorescence was used to evaluate retention of T cells, especially MAIT cells, in lung tissues during acute COVID-19. Our study confirms previous reports indicating that circulating MAITs are activated, and their frequency is declined in patients with acute SARS-CoV-2 infection, whereas an accumulation of MAITs and T cells was seen in the lung tissue of individuals with fatal COVID-19. However, despite a fraction of MAITs found to express ACE2, no evidence for the susceptibility of MAITs for direct infection or activation by SARS-CoV-2 particles was observed. Thus, their activation and decline in the circulation is most likely explained by indirect mechanisms involving other immune cells and cytokine-induced pro-inflammatory environment but not by direct exposure to viral particles at the infection site.

Keywords

References

  1. PLoS Pathog. 2021 Sep 16;17(9):e1009804 [PMID: 34529726]
  2. J Immunol. 2005 Dec 15;175(12):7791-5 [PMID: 16339512]
  3. Med. 2021 Jun 11;2(6):755-772.e5 [PMID: 33870241]
  4. Nat Immunol. 2021 Mar;22(3):322-335 [PMID: 33531712]
  5. Front Immunol. 2021 Oct 01;12:728685 [PMID: 34659215]
  6. J Mol Cell Biol. 2022 Aug 17;14(4): [PMID: 35451490]
  7. J Biophotonics. 2020 Feb;13(2):e201900183 [PMID: 31566889]
  8. J Immunol. 2021 Oct 1;207(7):1848-1856 [PMID: 34452933]
  9. J Exp Med. 2020 Dec 7;217(12): [PMID: 32886755]
  10. Nat Immunol. 2019 Sep;20(9):1110-1128 [PMID: 31406380]
  11. Viruses. 2021 Feb 03;13(2): [PMID: 33546489]
  12. Sci Immunol. 2020 Sep 28;5(51): [PMID: 32989174]
  13. Signal Transduct Target Ther. 2022 Mar 11;7(1):83 [PMID: 35277473]
  14. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  15. Immunol Cell Biol. 2018 Jul;96(6):630-641 [PMID: 29350807]
  16. Euro Surveill. 2020 Jan;25(3): [PMID: 31992387]
  17. Crit Rev Immunol. 2021;41(5):19-35 [PMID: 35381137]
  18. Annu Rev Immunol. 2020 Apr 26;38:203-228 [PMID: 31986071]
  19. Nat Commun. 2014;5:3143 [PMID: 24452018]
  20. Elife. 2021 Dec 24;10: [PMID: 34951583]
  21. Viruses. 2020 Oct 16;12(10): [PMID: 33081421]
  22. J Infect Dis. 2022 Mar 2;225(5):810-819 [PMID: 34918095]
  23. PLoS Pathog. 2013;9(10):e1003681 [PMID: 24130485]
  24. Biochemistry (Mosc). 2022 Jun;87(6):566-576 [PMID: 35790412]
  25. Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10133-8 [PMID: 27543331]
  26. Cell Mol Immunol. 2020 Jun;17(6):613-620 [PMID: 32203189]
  27. Signal Transduct Target Ther. 2020 Mar 27;5(1):33 [PMID: 32296069]
  28. Nat Commun. 2016 Jun 23;7:11653 [PMID: 27337592]
  29. Sci Rep. 2021 Jul 8;11(1):14090 [PMID: 34238985]
  30. Eur J Immunol. 2014 Jan;44(1):195-203 [PMID: 24019201]
  31. mBio. 2021 May 18;12(3): [PMID: 34006662]
  32. Nat Commun. 2020 Jan 14;11(1):272 [PMID: 31937782]
  33. J Infect Dis. 2016 Mar 15;213(6):904-14 [PMID: 26203058]
  34. Sci Rep. 2021 Sep 23;11(1):18955 [PMID: 34556690]
  35. J Intensive Care. 2020 May 24;8:36 [PMID: 32483488]
  36. Mil Med Res. 2022 May 27;9(1):24 [PMID: 35619176]
  37. Front Immunol. 2019 Feb 19;10:260 [PMID: 30838000]
  38. Nature. 2014 May 15;509(7500):361-5 [PMID: 24695216]

MeSH Term

Humans
Mucosal-Associated Invariant T Cells
COVID-19
Angiotensin-Converting Enzyme 2
Leukocytes, Mononuclear
SARS-CoV-2
Lung
Lymphopenia

Chemicals

Angiotensin-Converting Enzyme 2

Word Cloud

Created with Highcharts 10.0.0cellsTSARS-CoV-2COVID-19MAITsinfectionInvariantMAITpatientsacutedirectlungcelllymphopeniamechanismsespeciallyMucosalAssociatedexpressACE2HoweverstudyflowcytometrysusceptibilityexposureactivationparticlesProlongedcommoncausedremainelusivepronouncedspecializedinnate-likepopulationcalledsuggestedAngiotensin-ConvertingEnzyme2well-knowncellularreceptorstillunclearcaninfectaffectdirectlyperformedmulticolorperipheralbloodmononuclearobtainedassessfrequenciesCD8Vα72CD161subsetsconvalescentdiseasephasesanalysedusingisolatedhealthydonorbuffycoatsviabilityassaysvirus-specificRT-PCRsituimmunofluorescenceusedevaluateretentiontissuesconfirmspreviousreportsindicatingcirculatingactivatedfrequencydeclinedwhereasaccumulationseentissueindividualsfataldespitefractionfoundevidenceobservedThusdeclinecirculationlikelyexplainedindirectinvolvingimmunecytokine-inducedpro-inflammatoryenvironmentviralsiteMucosal-AssociatedCellssusceptiblevitroaccumulatelungsLymphopeniaViralchallenge

Similar Articles

Cited By